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Abstract—We consider wireless downlinks where the base
station dynamically switches between different users in order
to transmit data intended for the respective users. When the
base station switches from serving one user to another, there
is a reconfiguration delay. For such wireless downlinks with
reconfiguration delay we consider the problem of throughput
optimal scheduling. We propose the 1-lookahead scheduling policy
and analytically show that it is throughput optimal. We obtain
the 1-lookahead policy by using an approximate solution to a
Markov decision process formulation of the scheduling problem.
The approximate solution is also used to explain the biased max-
weight form of 1-lookahead as well as an existing policy.

Index Terms—Wireless downlink, Random connectivity, Recon-
figuration delay, Stability region, Throughput optimality

I. INTRODUCTION

We consider a wireless downlink model where the base
station switches between different users in order to transmit
data intended for the respective users. When switching between
users, the logical links between the user and the base station
need to be configured. For example, the user’s state may
need to be changed from an idle to an active state. This
incurs a reconfiguration delay, which is the delay between
the time at which the base station scheduler decides to serve
the user and the time at which the actual data transmission
starts. We note that such reconfiguration delay also arises in
other cases: such as satellite systems with mechanically steered
antennae, electronic beamforming, optical routers [1], and radio
transceivers [3]. The other important feature of such systems is
that the service of a user is also affected by the connectivity of
that user to the service station. For example, the connectivity
of the user is through a wireless channel subject to fading,
therefore the connectivity is random over time. Motivated by
such scenarios, we consider the stability region and throughput
optimal scheduling for a wireless downlink model with random
connectivity over time and reconfiguration delay (see Fig. 1).

For wireless networks with reconfiguration delay max-
weight policies [7] are not throughput optimal since such
policies switch between queues very frequently [2]. Prior work
in [1], [2], and [4] had proposed heuristic throughput optimal
policies for such systems. Celik et al. [2] proposed the variable
frame max-weight (VFMW) policy which reduces reconfigu-
ration delay overhead by restricting switching to happen only
at the ends of scheduling frames for wireless networks with
random connectivity and reconfiguration delay. Hsieh et al. [4]
proposed the queue biased max weight (QBMW) policy that is
throughput optimal for a queueing system with reconfiguration
delay. The average delay performance of VFMW policies was

Fig. 1. An example wireless downlink with two users and a base station
(BS). The data for the users have random packet arrivals Ai(t) into their
packet buffers at the BS. The BS can transmit at most one packet to one user
from its queue in a slot. The connections between the BS and the users are
randomly on or off across time (slots). When the BS switches from serving
one user to another there is a reconfiguration delay of Tr slots.

improved by the QBMW policy. However, why the specific
biased form of the QBMW policy was needed was not ad-
dressed in their paper. In this paper we propose the 1-lookahead
policy, which is another throughput optimal policy for systems
with reconfiguration delay. In contrast to VFMW and QBMW,
we use a formal Markov decision theoretic formulation to
analytically motivate the need for the bias term. The same
approach can be used to motivate the bias term used for
QBMW policies.
Outline, Contributions, and Notation: In Section II we discuss
the queueing model that we use for analyzing the wireless
downlink shown in Fig. 1 as well as its stability region.
Our main contribution in this paper is the analytically well-
motivated throughput optimal 1-lookahead policy, which we
propose in Section III. We then discuss a Markov decision
process formulation which is used to motivate the definition
of 1-lookahead policies in Section IV. Our first secondary
contribution is that we explain the bias term appearing in
the QBMW policy which has a similar form as 1-lookahead.
Another secondary contribution is in the proof of throughput
optimality of 1-lookahead and its relation to the proof of
throughput optimality of QBMW; we provide simplifications
and corrections to the proof in [4]. In this paper, all vectors
are column vectors and vector transposes are denoted by (.)T .

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system of N parallel queues served by a single
server to model a wireless downlink for N users1 (see Fig. 1

1We note that the model can also apply to a wireless uplink but with
additional assumptions on the availability of queue length information at a
centralized scheduler.



for an example with N = 2). The system evolves in slotted
time with the slots indexed by t ∈ {0, 1, 2, . . .}. In each slot
t, a random number Ai(t) of packets arrive to the base station
(BS) destined for the ith user, for every i ∈ {1, 2, . . . , N}.
For every user, these packets are queued in a separate infinite
length buffers at the BS. We assume that the random process
(Ai(t), t ≥ 0) is an independent and identically distributed
(IID) process (e.g., Ai(t) can be modelled by a Bernoulli
process). The arrival processes to different buffers are also
assumed to be independent. We denote the arrival rate EAi(0)
as λi and the column vector (λ1, . . . , λN )T as λ.

The BS scheduler decides which user’s queue is served in a
slot; Si(t) = 1 if the scheduler decides to serve user i in slot t
and 0 otherwise. We assume that

∑N
i=1 Si(t) = 1, i.e., at most

one user can be served in a slot. We assume that there is a
connection random process (Ci(t) ∈ {0, 1} , t ≥ 0) associated
with user i that models whether the BS is connected to user
i in slot t. We assume that the the processes (Ci(t), t ≥ 0)
are IID. We denote the average connection rate of queue i as
µi, i.e., ECi(0) = µi. We also assume that (Ci(t), t ≥ 0) and
(Cj(t), t ≥ 0) for two different queues i and j are independent.
We assume that the channel connectivity Cj(t),∀j is not
known to the scheduler at the start of slot t2. We assume that
if the BS is connected to user i and the scheduler decides to
serve user i, then at most one packet is removed from queue
i in slot t.

We assume that there is a reconfiguration delay of Tr
slots (see Fig. 1) if the server switches from serving one
queue to another. We assume that Tr ≥ 1. We denote the
number of slots to finish reconfiguration at time t by R(t).
If the scheduler switches from one queue to the another at
slot t, R(t) = Tr and then R(t) decrements by one for
every slot until R(t) = 0 if the scheduler stays with the
queue that it has switched to. Once reconfiguration is finished
R(t) stays at zero until the scheduler switches to another
queue. We note that a packet will be removed from the ith

queue in the tth slot only if Ci(t)Si(t)I{R(t)=0} = 1. We
define Ii(t) = Ci(t)Si(t)I{R(t)=0}, which is called the service
opportunity for queue i in slot t. We denote the number of
packets in the ith queue at the beginning of slot t as Qi(t).
Then,

Qi(t+ 1) = (Qi(t)− Ii(t))+ +Ai(t), (1)

where (x)+ = max(x, 0). We note that the packets which
arrive in slot t are assumed to stay in the system for at least
one slot.

A policy µ is the sequence of decisions (S(1),S(2), . . . ),
where S(t) is the vector (S1(t), . . . , SN (t))T . The
time average total queue length under a policy µ is
lim supT→∞

1
T E
[∑T−1

t=0

∑N
i=1Qi(t)

]
and is denoted as q(µ).

The queueing system with an arrival rate λ is said to be stable
under the policy µ if the time average total queue length q(µ)
is finite. The stability region Λ of the system is the set of
arrival rate vectors λ, where for each λ there exists a policy

2Since (Ci(t)) are IID, this information is not useful.

µ (possibly dependent on λ) such that the queueing system is
stable.

From [3], we have that if λ ∈ Λ then there exists βj ,∀j
such that βj ≥ 0,

∑
j βj ≤ 1 such that

λ ≤
∑
j

βjI
(j)µj ,

where I(j) is a column vector of length N with 1 at the jth

position and zero otherwise. It is known that the VFMW policy
from [2] can be used to achieve any point in the stability region
Λ. We note that both VFMW and QBMW are policies that
are throughput optimal for the above queueing system. In the
next section, we propose another throughput optimal policy
1-lookahead; the form of this policy is analytically motivated
using a Markov decision theoretic formulation.

III. THE 1-LOOKAHEAD POLICY

For the queueing model, any scheduling policy at the start
of a slot, needs to decide whether to keep serving the current
queue or to switch to any other queue. Intuitively, we should
serve a queue with large queue length, so that the queue
length can be reduced, and largest possible throughput, since
the reduction in queue length would be the most. This is
the intuition behind the decision rule that is proposed as
the 1-lookahead policy. We define our 1-lookahead policy in
Algorithm 1. We assume that the server is serving queue
i at t − 1 in Algorithm 1. For the 1-lookahead policy, the
weights Wi(t) (or Wj(t)) can be calculated as the expected
sum throughput that can be obtained in the immediate future
consisting of Tr + 1 slots under the decision of staying with
queue i (or switching to the jth queue). Then, if we stay
with queue i at t, the expected sum throughput, i.e., Wi(t)
is given by (1 + Tr)µi. If we decide to switch to queue j
at t, then the expected sum throughput, i.e., Wj(t) is given
by µj . We find that a heuristic modification to the weight
Wi(t) is required to show that the 1-lookahead policy is in fact
throughput optimal. We redefine Wi(t) as

(
1 + Tr

F (Q(t))

)
µi,

where F (Q(t)) = max(1, (
∑
iQi(t))

α), where α ∈ (0, 1).

Algorithm 1 1-lookahead policy
1: Calculate the weights Wj(t), j ∈ {1, 2, . . . , N}.
2: If Wi(t)Qi(t) < Wj(t)Qj(t), then switch to the jth

queue, else stay with the ith queue.

A natural question that arises in the definition of 1-lookahead
policies is why we are looking at the expected total throughput
for Tr + 1 slots and not Tr + m slots for some m ≥ 1. In
the next section we motivate this and the exact form for the
1-lookahead policy by considering a Markov decision process
(MDP) formulation for the problem of minimizing time average
total queue length for the queueing system discussed in our
paper. We show that the 1-lookahead policy arises from a
heuristic approximate solution to the average cost optimality
equation for a Markov decision process formulated for the
queueing system in our paper. The reason why m = 1 is related
to the need for keeping the policy specification simple.



We now show that the 1-lookahead policy has finite average
queue length for any arrival rate vector within the stability
region of the system and is therefore throughput optimal.

Theorem III.1. For IID channel connection processes, for any
arrival rate that is within the stability region, the 1-lookahead
policy has finite average queue length.

The proof of this theorem is presented in Appendix A. We
note that the proof of this theorem borrows ideas from the
proof of the throughput optimality of QBMW in [4].
Comparison with QBMW: We note that the form of 1-
lookahead policy is similar to that of the QBMW policy.
However, for the QBMW policy the weight Wi(t) is calculated
as 1 + Tr

F (Q(tk)) where tk is the time of the last switch before
t. Since the form of 1-lookahead is almost the same as that of
QBMW, the derivation of the weight terms for the 1-lookahead
given in the next section also motivates the form of the QBMW
policy. We also note that the proof of throughput optimality
of QBMW relies upon showing that the drift of a Lyapunov
function, defined as the sum of squared queue lengths in a slot,
is negative when considered over frames (multiple slots). We
expect that during reconfiguration delay after a switch, since
there is no service, the Lyapunov drift would not be negative.
Hsieh et al. [4] define a frame size parameter T̃k in order to
show that the drift is indeed negative when considered over
T̃k slots which include the reconfiguration delay. However, the
proof in [4] does not consider what happens when T̃k < Tr.
We address this problem in our paper.

IV. MARKOV DECISION PROCESS FORMULATION

We consider a two queue system here for ease of exposition.
We note that instead of finding a scheduling policy such that
the average queue length under that policy is just finite we
reformulate our objective to find a scheduling policy that
minimizes

lim sup
T→∞

1

T

T−1∑
t=0

E [Q1(t) +Q2(t)] . (2)

In order to find a scheduling policy that minimizes (2) defined
above, we use a Markov decision process (MDP) formula-
tion (see [8], [9]). The state of the MDP is defined to be
S(t) = (Q1(t), Q2(t), R(t),M(t)), where M(t) ∈ {0, 1}
indicates whether the first queue or second queue has been in
service at slot t− 1 respectively. The state space of the MDP
is the Cartesian product of the state spaces of the individual
components, i.e., Z+ ×Z+ ×{0, . . . , Tr}× {0, 1}. We denote
a specific state vector value as s = (q1, q2, r,m)T . The action
taken at slot t is γ(t) which is defined as either staying with
the current queue (γ(t) = 0) or switching to the other queue
(γ(t) = 1). The evolution of the MDP’s state from slot to slot,
i.e., S(t) to S(t+ 1), is defined in terms of its components as
follows:

1) if γ(t) = 0 and R(t) > 0 then R(t+ 1) = R(t)− 1 and
since Tr ≥ 1 there is no service from the M(t)th queue;
we denote this as IM(t)(t) = 0,

2) if γ(t) = 0 and R(t) = 0 then we have IM(t)(t) = 1,

3) if γ(t) = 1 then R(t) = Tr and IM(t)(t) = 0; M(t)
changes to the queue that was switched to,

4) Qi(t+ 1) = max(Qi(t)− Ii(t), 0) +Ai(t).
Since we are interested in minimizing the time average ex-
pected total queue length, the single stage cost of the MDP at
slot t is chosen as Q1(t) + Q2(t). Suppose the average cost
optimality equation (ACOE) [9, Chapter 6] exists3 for the MDP.
The ACOE is of the form [9, Chapter 6, Theorem 6.3.1]

h(s) = min
γ∈{0,1}

{
q1 + q2 − g∗ + E

[
h(S(+1))|s

]}
, (3)

where h(s) is the relative value function; which is a function
of the state s = (q1, q2, r,m)T , g∗ is the optimal minimum
average cost (or sum of average queue lengths) and S(+1) is
the state that the MDP evolves to in one step starting from s
according to the MDP evolution described above. We note that
q1 + q2 is the single stage cost when the state of the MDP is
s.

The possible actions which can be taken when the state is
s is: (a) 0 (stay with the current queue) or (b) 1 (switch to
the other queue). The optimal policy is a stationary policy
that chooses an action γ ∈ {0, 1} in order to minimize the
expression within the minimization in the RHS of (3). This
optimal stationary policy prescribes an action γ as a function
γ(s) of the state s. Note that if the function h(s) is known then
the optimal stationary policy can be completely characterized.
However, in (3) both h(s) and g∗ are not known. In most cases,
the above functional equation cannot be solved analytically for
h(s) and g∗.

Value iteration [9, Section 6.6] is an iterative procedure that
can be used to obtain a solution to the ACOE. We let V1(s) =
q1 + q2. We define

Vn+1(s) = min
γ∈{0,1}

{
q1 + q2 + E

[
Vn(S(+1))|s

]}
. (4)

We recall that S(+1) is the state that the MDP evolves to
in a single slot starting from state s. We note that Vn(s),
called the value function, is the minimum expected cumulative
sum of queue lengths when the system evolution is consid-
ered over n slots starting with state s (or S(0) = s) (i.e.
E
[∑n−1

t=0

∑N
i=1Qi(t)|S(0) = s

]
). From [9, eq 6.6.7] for large

enough n we have that the γ which attains the minimum
in the above value iteration equation (4) for every s is an
approximately-optimal stationary policy γ(s) for the average
cost problem. Furthermore, again from [9, eq. 6.3.6] we have
that for large n,

Vn(s) = h(s) + ng∗. (5)

The motivating idea behind the definition of the 1-lookahead
policy is that a good policy can be obtained from the ACOE (3)

3 We note that one of the sufficient conditions for the existence of the ACOE
is that there exists a policy under which (2) is finite. Since the VFMW policy
has a finite average queue length if the arrival rate vector is within Λ, the
above sufficient condition is satisfied. Other sufficient conditions (which deal
with irreducibility of the queue length Markov chain) for the existence of the
ACOE can be shown to hold under appropriate assumptions on the distribution
of the arrival random variables. Since this informal discussion is to motivate
the form of the 1-lookahead policy, these details are not included here.
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Fig. 2. The relative value function h(s), where s = (q1, q2, r,m) plotted as a
function of q2 for different q1, r, and m. The relative value function has been
obtained from value iteration carried out for a system with buffer size for both
queues truncated to 1000, channel connectivity parameters µ1 = µ2 = 0.5
and arrival rates λ1 = 0.15 and λ2 = 0.2. We observe that h(s) need to be
approximated by a non-linear function of q2.

or the value iteration (4) if a good approximation can be found
for h(s) or Vn(s). The approximations for h(s) or Vn(s) can
be substituted into the RHS of the ACOE (3) and (4) and the
minimizing γ can be proposed as a candidate policy. Suppose
an approximation to h(s) is h̃(s). We note that except for a
constant h̃(s) is also an approximation for Vn(s) from (5).

We first use a fluid model [6, Chapter 10] of the queueing
system in order to motivate that h̃(s) =

∑
i q

2
i is a reasonable

approximation to the function h(s). Under the optimal policy
let µi be the time average of the service opportunity which
is given to queue i. The fluid model of the queueing system
models each queue length as a deterministic function qi(t)
which evolves according to the differential equation

dqi(t)

dt
= −(µi − λi).

We assume that the initial state qi(0) of queue i is qi (the
component of our state s). We then obtain that qi(t) =
max(qi − (µi − λi)t, 0). The area under the qi(t) function or
the cumulative queue length for queue i is proportional to q2

i .
The total cumulative queue length, which is then proportional∑
i q

2
i , is the value function for the fluid model. From [6,

Theorem 10.0.3] we have that the value function for the fluid
model is the same as the relative value function h(s), where
the queue length components of s are q1 and q2 used in the
fluid model, in an asymptotic regime where q1, q2 → ∞. So
we approximate the relative value function h(s) with

∑
i q

2
i .

The second motivation for the use of
∑
i q

2
i as an ap-

proximation comes from numerically solving the ACOE using
value iteration. In Fig. 2, we plot h(s) as a function of q2

for different q1, r, and m. where h(s) has been obtained
using value iteration for 1000 iterations and for queue length
state space truncated to 1000. The other parameters used are
indicated in Fig. 2. We find that a second order polynomial
(i.e., c1q

2
2 + c2q2 + c3) is a good choice for fitting the

observed function. When higher degree polynomials are used,
the coefficients of higher degree terms are seen to be close
to zero. We note that we exclude linear terms as well as cross
terms (i.e., q1q2) in our approximation for the sake of analytical
simplicity.

We now use the sum of squares approximation to motivate
the form of the 1-lookahead policy. From (4), we have that a

policy that achieves the minimum in

min
γ∈{0,1}

{
q1 + q2 + E

[
Vn(S+)|s

]}
,

for large enough n is approximately optimal for the average
queue length minimization problem. Suppose we use the sum
of squares approximation

∑
i q

2
i for Vn(s) (motivated by (5)).

Then, we are considering the policy that chooses γ to achieve
the minimum as follows

min
γ∈{0,1}

{
q1 + q2 + E

[
Q1(1)2 +Q2(1)2|s

]}
.

Here Q1(1) and Q2(1) are the queue lengths that the MDP
evolves to under an action γ according to the MDP evolution
described above starting with Q1(0) = q1 and Q2(0) = q2.

Let us consider the case where s is such that queue 1 is
currently being served (a similar discussion holds for the case
where queue 2 is being served). For γ = 0 we have that

E
[
Q1(1)2 +Q2(1)2|s

]
= E

[
(q1 − C1 +A1)2 + (q2 +A2)2

]
and for γ = 1 we have that

E
[
Q1(1)2 +Q2(1)2|s

]
= E

[
(q1 +A1)2 + (q2 +A2)2

]
,

since we have Tr ≥ 1. We see that γ = 1 will never be
chosen; this happens of course because our approximation does
not capture the possible service that can happen for queue 2
after Tr slots. The approximation does not capture the possible
service since the approximation, although simple, does not
include other state variables especially r. In order to capture
this potential service after Tr slots we proceed by writing
Vn+1(s) as:

Vn+1(s) = min
γ∈{0,1}

{
E

[
Tr+m−1∑
τ=0

(Q1(τ) +Q2(τ))|s

]
+

E
[
Vn−(Tr+m−1)(S

+(Tr+m))|s
]}

.

Here Q1(0) = q1 and Q2(0) = q2 where q1 and q2

are the queue length components of s. Also Qi(τ) is the
queue length that the MDP evolves to in the τ th slot after
taking action γ in the first slot and then the optimal ac-
tions in all slots. Then, specially note that the expectation
E
[∑Tr+m−1

τ=0 (Q1(τ) +Q2(τ))|s
]

is computed and the state

S+(Tr+m) is what the MDP evolves to in Tr +m slots under
the use of γ in the first slot and the optimal policy after that.
We note that the above alternate expression for Vn+1(s) can be
written for any n > Tr+m, but we are interested in sufficiently
large values of n. We now explicitly indicate that the optimal
actions are taken for the first Tr + m − 1 slots by using a
minimization over action variables γ1, . . . , γTr+m−1. We have
that Vn+1(s) is

min
γ,γ1,...,γTr+m−1

{
E
[∑Tr+m−1

τ=0 (Q1(τ) +Q2(τ))|s
]

E
[
Vn−(Tr+m−1)(S

+(Tr+m))|s
]}

. (6)

We note that since n is large the sum of squares approximation
can also be applied to Vn−(Tr+m−1)(s).



We now consider the case where m = 1. For m = 1 we
note that

Vn+1(s) = min
γ,γ1,...,γTr

{
E
[ Tr∑
τ=0

(Q1(τ) +Q2(τ))|s
]

+E
[
Vn−Tr (S

+(Tr+1))|s
]}

. (7)

Assuming that s is such that queue 1 is being served, the
possible action sequences can be divided into three:
A1: γ = γ1 = · · · = γTr = 0 or stay with queue 1 for Tr

slots,
A2: γ = 1, γ1 = · · · = γTr = 0 or switch to queue 2 in the

first slot and then stay with queue 2 for the rest of Tr
slots,

A3: Any other action sequence.
In the following, in order to differentiate between queue length
evolution under different action sequences, we use Qji (t) to
denote the queue length for queue i under action sequence
Aj (e.g. Q3

1(t) for queue length of queue 1 under action
sequence A3). For the action sequence A1, we have for all
τ ∈ {0, . . . , Tr + 1}

Q1
1(τ) = q1 −

τ−1∑
l=0

C1(l) +

τ−1∑
l=0

A1(l), and

Q1
2(τ) = q2 +

τ−1∑
l=0

A2(l).

For the action sequence A2, we have for all τ ∈
{0, . . . , Tr + 1}

Q2
1(τ) = q1 +

τ−1∑
l=0

A1(l),

and for all τ ∈ {0, . . . , Tr},

Q2
2(τ) = q2 +

τ−1∑
l=0

A2(l).

We note that there is no service under A2 for the first Tr slots,
but at the (Tr + 1)th we do have a service, i.e,

Q2
2(Tr + 1) = q2 − C2(Tr) +

Tr∑
l=0

A2(l).

We note that the action sequence corresponding to A3 above
is of the form (γ = 0, γ1 = 0, . . . , γτs−1 = 1, . . . ). That is,
we switch to queue 2 from queue 1 in the τ ths slot where
τs > 1. We note that for m = 1, after τs there cannot be any
more service in the system in the first Tr slots since there is
a reconfiguration delay of Tr slots. Then, we have that for A3
and any τ ∈ {0, 1, . . . , Tr + 1}

Q3
1(τ) = q1 −

min(τ,τs)−1∑
l=0

C1(l) +

τ−1∑
l=0

A1(l), and

Q3
2(τ) = q2 +

τ−1∑
l=0

A2(l).

We note that for the same sample path of arrivals
A1(l), A2(l) and channel connectivity C1(l) and C2(l) and
for any τ ∈ {0, . . . , Tr + 1}, Q1

1(τ) ≤ Q3
1(τ) and Q1

2(τ) =
Q3

2(τ). Also under the assumption of the sum of squares form
for Vn−Tr (.) we have that under A1

E
[
Vn−Tr (S

+(Tr+1))|s
]

= E

[∑
i

(Q1
i (Tr + 1))2

∣∣s] ,
which is less than the following corresponding value

E
[
Vn−Tr (S

+(Tr+1))|s
]

= E

[∑
i

(Q3
i (Tr + 1))2

∣∣s] ,
under A3. Therefore, we conclude that for m = 1 and a sum of
squares approximation for Vn−Tr (s), the optimal sequence of
actions is either A1 or A2 in the above list but not any action
sequence in A3. Thus, for m = 1 with the sum of squares form
for Vn−Tr (.) we have that the optimal choice is between A1
and A2; which incidentally is a choice between staying with
the current queue or switching to the other queue. This choice
forms the basis for the definition of the 1-lookahead (note that
m = 1) policy.

From (7) and the fact that the optimal sequence is either A1
or A2 we have the following decision rule. We choose γ = 0
if

E

[∑
i

Tr∑
τ=0

Q1
i (τ) +

∑
i

Q1
i (Tr + 1))2

∣∣s] <
E

[∑
i

Tr∑
τ=0

Q2
i (τ) +

∑
i

Q2
i (Tr + 1))2

∣∣s]
(8)

and γ = 1 otherwise. We have that

E

[
Tr∑
τ=0

(Q1
1(τ) +Q1

2(τ))|s

]
= (9)

E

[
Tr∑
τ=0

[∑
i

(qi +

τ−1∑
l=0

Ai(l))−
τ−1∑
l=0

C1(l)

] ∣∣∣∣s
]
,

and E
[∑

i(Q
1
i (Tr + 1))2|s

]
is

E

[
(q1 +

Tr∑
τ=0

(A1(τ)− C1(τ)))2 + (q2 +

Tr∑
τ=0

A2(τ))2|s

]
which can be simplified as

= E

( Tr∑
τ=0

C1(τ)

)2

|C1(0)

+ E

( Tr∑
τ=0

A1(τ)

)2
−

2q1E

[
Tr∑
τ=0

C1(τ))|C1(0)

]
+ 2q1E

[
Tr∑
τ=0

A1(τ)

]

−2E

[
Tr∑
τ=0

C1(τ))|C1(0)

]
E

[
Tr∑
τ=0

A1(τ)

]
+ q2

1 + q2
2 +

E

( Tr∑
τ=0

A2(τ)

)2
+ 2q2E

[
Tr∑
τ=0

A2(τ)

]
. (10)



Similarly we have that

E

[
Tr∑
τ=0

(Q2
1(τ) +Q2

2(τ))|s

]
= (11)

E

[
Tr∑
τ=0

(q1 +

τ−1∑
l=0

A1(l) + q2 +

τ−1∑
l=0

A2(l))|s

]
,

and

E
[
(Q2

1(Tr + 1))2 + (Q2
2(Tr + 1))2|s

]
=

E

[
(q1 +

Tr∑
τ=0

A1(τ))2 + (q2 − C2(Tr) +

Tr∑
τ=0

A2(τ))2|s

]

= q2
1 + E

( Tr∑
τ=0

A1(τ)

)2
+ 2q1E

[
Tr∑
τ=0

A1(τ)

]
+ q2

2 +

E

( Tr∑
τ=0

A2(τ)

)2
+ 2q2E

[
Tr∑
τ=0

A2(τ)

]
+E

[
(C2(Tr))

2|C2(0)
]
− 2q2E [C2(Tr)|C2(0)]−

2E [C2(Tr)|C2(0)]E

[
Tr∑
τ=0

A2(τ)

]
. (12)

We note that the comparison in (8) is equivalent to the
comparison

(9) + (10) < (11) + (12).

Several terms are common in (9) + (10) and (11) + (12). We
cancel out those common terms and keep only those terms
which have a queue length term appearing in it. For large values
of queue lengths, these terms would dominate other constant
terms. Furthermore, such a choice would result in the decision
rule for 1-lookahead to have a simple biased max-weight form.
Then, we get a heuristic decision rule of choosing γ = 0 if

−2q1E

[
Tr∑
τ=0

C1(τ))|C1(0)

]
< −2q2E [C2(Tr)|C2(0)] , or,

q1E

[
Tr∑
τ=0

C1(τ))|C1(0)

]
> q2E [C2(Tr)|C2(0)] ,

and γ = 1 otherwise. We note that this is the motivation behind
the definition of the biased max-weight 1-lookahead policy.

We now consider the case where m > 1. Using a similar
sequence of steps as for m = 1 it is possible to derive a
decision rule comparing A1 with A2. This comparison between
A1 and A2 leads to the rule of choosing γ = 0 if

q1E

[
Tr+m−1∑
τ=0

C1(τ))|C1(0)

]
> q2E

[
Tr+m−1∑
τ=Tr

C2(τ)|C2(0)

]
.

However, for m > 1 we note that it is not possible to conclude
that the optimal sequence of actions is either A1 or A2 but not
any in A3. We illustrate this via an example here. Consider (6)
for Tr = 2 and m = 3. Assuming that we are serving queue
1, a possible sequence of decisions is (γ = 0, γ1 = 1, γ2 =
0, γ3 = 1, γ4 = 0), i.e., we stay with queue 1, then switch to

queue 2, wait for 2 slots, switch back to queue 1 and wait for
2 slots. Such a sequence of decisions might lead to service for
both queue 1 and queue 2. We note that the simple decision
rule that we have proposed in this case just compares A1 and
A2 and not any policy in A3 (such as the one above). If we
include other comparisons to action sequences of type A3, the
simplicity of the definition of 1-lookahead policies does not
carry over. Since, 1-lookahead policies are throughput optimal
and have a simple specification, we restrict our attention to the
case of m = 1. We note that the correction to the weight or
bias, using Tr

F (Q(t)) , is motivated by the proof of throughput
optimality.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we considered queueing system models with
reconfiguration delay. We proposed a new 1-lookahead policy
using an approximate solution to a Markov decision process
formulation. The biased max-weight form of the 1-lookahead
policy is analytically well motivated. Furthermore, since the
form of 1-lookahead is similar to that of QBMW, the bias
term which appears in QBMW can also be explained using
this analytical development. We also prove that 1-lookahead
is throughput optimal. We note that the Markov decision
process formulation can be extended to the case of correlated
channel connectivity, by including channel states in the MDP’s
state. It is possible to again define a 1-lookahead policy for
the correlated channel case (see [5]); proving the throughput
optimality of such a policy would be part of our future work.
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[2] Güner D Celik, Long B Le, and Eytan Modiano. Dynamic server allocation
over time-varying channels with switchover delay. IEEE Transactions on
Information Theory, 58(9):5856–5877, 2012.
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APPENDIX A
PROOF OF THEOREM III.1

We prove the stability of the modified 1-lookahead policy
in this section. Suppose tk is the slot at which the kth switch
happens. Let Tk = tk+1− tk be the duration of the kth frame.
Let us assume that in the kth frame the ith queue is being



served. Then we note that at tk, µiQi(tk) > µjQj(tk) for
every j. Furthermore, we have that there exists a j such that(

1 +
Tr

F (Q(tk + Tk))

)
Qi(tk + Tk)µi < Qj(tk + Tk)µj .

We first prove the following lemma which states that for large
enough queue lengths, the duration of the frame Tk is large.
The proof is similar to Lemma 3 in [4].

Lemma A.1. The length Tk of the kth frame for every k is
such that

T 1+α
k >

Tr
∑
lQl(tk)µl

N (1 + (AmaxN +
∑
lQl(tk)µl)

α
) (1 + Tr +Amax)

,

where α ∈ (0, 1) is as in the definition of F (Q(t)).

Proof. From the definition of Tk (or tk+1) we have that there
exists a j such that(

1 +
Tr

F (Q(tk + Tk))

)
Qi(tk + Tk)µi < Qj(tk + Tk)µj .

We note that

Qi(tk + Tk) ≥ Qi(tk)− Tk,
Qj(tk + Tk) ≤ Qj(tk) +AmaxTk,

where we have used the fact that in Tk slots the maximum
amount of service for queue i is Tk and the maximum number
of arrivals for queue j is AmaxTk. We also note that the first
lower bound could be negative. Substituting these bounds we
obtain that(

1 +
Tr

F (Q(tk + Tk))

)
(Qi(tk)− Tk)µi <

(Qj(tk) +AmaxTk)µj ,(
1 +

Tr
F (Q(tk + Tk))

)
Qi(tk)µi − µjQj(tk) <

Tk((1 + Tr)µi +Amaxµj),

where we have used F (Q(tk+Tk)) ≥ 1. Since µi and µj ≤ 1
and µiQi(tk) ≥ µjQj(tk) we have that

Tk >
TrQi(tk)µi

F (Q(tk + Tk))(1 + Tr +Amax)
. (13)

We note that

F (Q(tk + Tk)) ≤ 1 +

(∑
l

(Ql(tk) +AmaxTk)µl

)α
,

≤ 1 +

(
AmaxTkN +

∑
l

Ql(tk)µl

)α
,

where we have used that there are N queues and µl ≤ 1,∀l.
Then we have that

F (Q(tk + Tk)) ≤ 1 + Tαk

(
AmaxN +

∑
l

Ql(tk)µl

)α
,

≤ Tαk

(
1 +

(
AmaxN +

∑
l

Ql(tk)µl

)α)
.

where we have used Tk ≥ 1. Using this upper bound on F (.)
in (13) we obtain that

T 1+α
k >

TrQi(tk)µi
(1 + (AmaxN +

∑
lQl(tk)µl)

α
) (1 + Tr +Amax)

.

We also note that Qi(tk)µi ≥ Ql(tk)µl and hence Qi(tk)µi ≥∑
lQl(tk)µl
N . Hence,

T 1+α
k >

Tr
∑
lQl(tk)µl

N (1 + (AmaxN +
∑
lQl(tk)µl)

α
) (1 + Tr +Amax)

.

An important corollary of this lemma is stated below.

Corollary A.2. Given a ∆ ∈ Z+ there is a finite set Q∆ of
queue length vectors such that Tk ≥ Tr + ∆ for Q(tk) ∈ Qc∆.

Proof. From Lemma A.1 we have that Tk >(
Tr
∑
lQl(tk)µl

N (1 + (AmaxN +
∑
lQl(tk)µl)

α
) (1 + Tr +Amax)

) 1
1+α

.

We note that the lower bound on Tk is an increasing function
of
∑
lQl(tk)µl. So for a given ∆, there is a finite δ such

that Tk ≥ Tr + ∆ for
∑
lQl(tk)µl > δ. There is a finite set

of queue length vectors Q∆ such that
∑
lQl(tk)µl ≤ δ for

which the above lower bound on Tk does not guarantee that
Tk > Tr + ∆.

We now prove the stability of the 1-lookahead policy using
Lyapunov drift arguments. The Lyapunov function is chosen
to be L(t) =

∑
lQl(t)

2. From Corollary A.2, we note that
at tk for all queue length vectors except for a finite set Q∆

we have that Tk ≥ Tr + ∆. We first consider the case of the
complement set of Q∆. So Tk ≥ Tr + ∆ in the discussion
below.

In the stability proof, we will consider the Lyapunov drift
of the system over a frame, first between tk and tk + Tr +
∆ and then for every slot in {tk + Tr + ∆ + 1, tk + Tk}. We
note that in [4] the drift is considered over tk and tk + T̃k
instead of between tk and tk+Tr +∆. In [4], T̃k is defined as
min(Tk, F (Q(tk))). It is not clear why T̃k would be greater
than Tr; this property is essential to the drift arguments that
follow in [4]. In contrast, we consider T̃k to be a constant
Tr+∆ but only for those tk for which the queue length vector
lies in Qc∆. Then, we show that whatever Lyapunov drift that
we obtain for the case where Q(tk) ∈ Qc∆ can be applied
to the case where Q(tk) ∈ Q∆ but with a different constant
factor in the drift expression.

The Lyapunov drift between tk and tk + Tr + ∆ is∑
l

Ql(tk + Tr + ∆)2 −
∑
l

Ql(tk)2.

We note that

Ql(tk + Tr + ∆) ≤ max

(
Ql(tk)−

Tr+∆−1∑
t=0

Il(tk + t), 0

)
+

Tr+∆−1∑
t=0

Al(tk + t).



With Γl defined as max
(
Ql(tk)−

∑Tr+∆−1
t=0 Il(tk + t), 0

)
−(

Ql(tk)−
∑Tr+∆−1
t=0 Il(tk + t)

)
, we have that

Ql(tk + Tr + ∆) ≤ Ql(tk)−
∑Tr+∆−1
t=0 Il(tk + t) + Γl +∑Tr+∆−1

t=0 Al(tk + t).

Then (14) can be bounded above as

∑
l

(
Ql(tk)−

Tr+∆−1∑
t=0

Il(tk + t) + Γl +

Tr+∆−1∑
t=0

Al(tk + t)

)2

−Ql(tk)2,

≤ B∆
0 + 2

∑
l

Ql

(
Tr+∆−1∑
t=0

(Al(tk + t)− Il(tk + t))

)
.

Here B∆
0 is a constant which is obtained by bounding Il(tk+t)

above by 1, Al(tk) above by Amax, and the fact that Γl is at
most (Tr + ∆) and is non-zero only if Ql ≤ Tr + ∆. We
note that B∆

0 is a function of ∆. The expected Lyapunov drift
(which is conditioned on Q(tk)) is then

≤ B∆
0 + 2

∑
l

Ql
(
(Tr + ∆)λl −∆I{l=i}µi

)
,

where I{l=i} is 1 if l = i and 0 otherwise, since in the kth

frame there is service only for the ith queue. Furthermore,
in the first Tr slots after tk we do not have service since
the system is in reconfiguration. We now write the expected
Lyapunov using vector notation as being

≤ B∆
0 + 2

(
λ− ∆

Tr + ∆
I(i)µi

)T
Q(tk), (14)

where all vectors are column vectors and I(i) is a vector of
zeros except with 1 at the ith position. Suppose we consider
a λ in the stability region, then we have that there exists a set
of βj (

∑
j βj ≤ 1) such that

λ ≤
∑
j

βjI
(j)µj ,

and we can write λ = (1 − ε)
∑
j βjI

(j)µj for some ε > 0.
Furthermore we have that µj(I(j))TQ(tk) ≤ µi(I

(i))TQ(tk)
since we have switched to i at tk. Then we have that (14) is

≤ B∆
0 + 2

((
1− ε− ∆

Tr + ∆

)
I(i)µi

)T
Q(tk),

For any ε > 0 we choose ∆ such that 1− ε− ∆
Tr+∆ = −ε1 for

some ε1 > 0. Then we have that the expected Lyapunov drift
between tk + Tr + ∆ and tk is

≤ B∆
0 − 2ε1µi

(
I(i)
)T

Q(tk).

Now since µj(I(j))TQ(tk) ≤ µi(I(i))TQ(tk) we have that

≤ B∆
0 − 2

ε1
N

∑
l

µlQl(tk).

We note that Ql(tk + t) ≤ Ql(tk) +Amaxt or
Tr+∆−1∑
t=0

µlQl(tk + t)− µlAmax(Tr + ∆)(Tr + ∆ + 1)

2
≤

(Tr + ∆)µlQl(tk).

Then the expected Lyapunov drift between tk and tk +Tr + ∆
is

≤ B∆
1 − 2

ε1
(Tr + ∆)N

∑
l

µl

Tr+∆−1∑
t=0

Ql(tk + t),

where B∆
1 is a constant dependent on ∆.

We now consider the slot to slot drift of the Lyapunov
functions for slots t ∈ {tk + Tr + ∆ + 1, tk + Tk}. We note
that we are still restricting to those tk at which Q(tk) ∈ Qc∆.
The Lyapunov drift is∑

l

Ql(t+ 1)2 −
∑
l

Ql(t)
2

As in the previous case we have that

Ql(t+ 1) = Ql(t)− Il(t) +Al(t) + Γl,

and it can be shown that the Lyapunov drift is

≤ B2 + 2
∑
l

Ql(t) (Al(t)− Il(t)) .

The expected Lyapunov drift conditioned on Q(t) is

≤ B2 + 2
∑
l

Ql(t)
(
λl − I{l=i}µi

)
.

Here we note that there is only service to queue i in frame k
and we are considering slots after the reconfiguration delay. In
vector notation we have

≤ B2 + 2
(
λ− I(i)µi

)T
Q(t). (15)

Since λ is in the stability region we again have that (15) is

≤ B2 + 2

(1− ε)
∑
j

βjI
(j)µj − I(i)µi

T

Q(t).

We note that at t, µj(I
(j))TQ(t) ≤(

1 + Tr
F (Q(t))

)
µi(I

(i))TQ(t). Substituting we get the
conditional drift as

≤ B2 + 2

(
(1− ε)

(
1 +

Tr
F (Q(t))

)
− 1

)
µi(I

(i))TQ(t),

= B2 + 2

(
−ε+ (1− ε)

(
Tr

F (Q(t))

))
µi(I

(i))TQ(t)

= B2 − 2εµi(I
(i))TQ(t) + 2(1− ε)

(
Tr

F (Q(t))

)
µi(I

(i))TQ(t).

We note that µi(I
(i))TQ(t) ≤

∑
l µl(I

(l))TQ(t). Also
µi(I

(i))TQ(t) ≥ 1
N(1+Tr)

∑
l µl(I

(l))TQ(t). There we have
the conditional drift as

≤ B2 −
2ε

N(1 + Tr)

∑
l

µl(I
(l))TQ(t) +

2(1− ε)
(

Tr
F (Q(t))

)∑
l

µl(I
(l))TQ(t).



We note that there would exist a finite set Qα in the comple-
ment of which the above drift would be negative since the
dominant term in the above bound is the second term. By
defining a new constant B3, we can therefore write that the
expected drift is

≤ B3 −
2ε2

N(1 + Tr)

∑
l

µl(I
(l))TQ(t).

We note that the above drifts were defined for tk such that
Q(tk) 6∈ Q∆. By redefining the constants in the drift expres-
sions we have that for all Q(tk) the above drift conditions hold.
Then the rest of the proof proceeds as in [4] (from equation 127
onwards) and it can be shown that the average queue length is
finite.
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