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Abstract—We study stability properties of single-source single-
destination delay tolerant networks with random packet arrivals
and buffered relay nodes, using source spray and wait routing.
We derive the stability threshold, the supremum of arrival
rates for which the source queue is stable, as a function of
the buffer space at the relays. In particular, we show that the
stability threshold only doubles as the relays’ buffer size increases
from one to infinity for a network without packet delivery
feedback. For the system without packet delivery feedback, we
propose lower bounds for the average queueing delay and average
delivery delay for packets and compare with simulations. We also
obtain the stability threshold numerically for a network with
instantaneous packet delivery feedback.

I. INTRODUCTION

Delay tolerant networks (DTNs) are comprised of nodes
connected by links which have intermittent connectivity. In
order to transport packets reliably in such networks, the store
and copy paradigm is used in DTN routing and scheduling
protocols such as Epidemic [1], Spray and Wait [2], Spray and
Focus [3], Maxprop [4], Rapid [5], and Prophet [6]. Such DTN
routing protocols copy packets from the source to multiple
relay nodes so that there is diversity in the packets’ path
to the destination. This leads to an improved probability of
packet delivery within a target time and average delivery delay.
However, copying of packets from a source to a relay node
requires the relay to have enough storage or buffer space to
store the packet copies until it can be delivered or copied again.
An important engineering problem is provisioning the storage
or buffer space at the nodes, which can be used to tradeoff
various quality of service metrics of the network.

In this paper, we consider the effect of storage or buffer size
of the relays on performance metrics such as queue stability
region, average queueing delay, and average delivery delay for
a DTN with a single source and destination of packets. The
DTN uses the source Spray and Wait (SW) routing protocol
[2] to copy packets to mobile relay nodes which have finite
buffer capacity to hold the packets. We obtain conditions for
stability of the source queue, an analytical lower bound for the
average queueing delay experienced by packets at the source
queue, and a lower bound for the average delivery delay of
packets.
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We assume that the source generates packets at the epochs
of a Poisson point process. In contrast to prior work on DTNs
which have assumed lone packet models (only a single packet
exists within the network at a time), we consider queueing
stability and queueing delay for DTNs with random arrivals
as a function of the buffer size at relay nodes. We consider
Source Spray and Wait (SW) protocol [1] which copies a
single packet K times to relays. The SW protocol consists of
a spray phase and a wait phase. In the spray phase the source
copies the packet to the first K relays that it meets. But a
relay that is carrying the packet cannot copy it to another
relay. After the source copies the packet to K relays, the
protocol enters the wait phase which continues until the packet
reaches the destination. In our prior work [7] we had studied
stability and delay performance for a similar DTN model but
with extremely resource limited relay nodes which have a unit
buffer capacity. In this paper, we consider stability and delay
performance when all relay nodes have a buffer size of B. We
obtain that the stability region of the DTN at most doubles
when the buffer size B increases to infinity from one.

Lee et al. [8] study the asymptotic scaling of stability region
and delay in a DTN as the number of nodes N increases. We
note that this paper provides non-asymptotic results compared
to the scaling laws which were obtained in [8]. Also, [8]
assumes that all relays share a common buffer, while we
assume per-relay buffers which are more realistic. Herdtner
et al. [9] consider the effect of finite buffers on the sum
throughput of a mobile adhoc network and shows that the sum
throughput degrades substantially compared to systems with
infinite buffers. Mahendran et al. [10] propose an asymptotic
large-deviations based scheme to provision relay buffer sizes
in a DTN so that performance is close to a DTN with infinite
relay buffer size. Using our stability results we also show that
a buffer size of 19 is enough to achieve 95% of the maximum
achievable throughput.

We note that prior work on DTNs with packet arrivals (e.g.,
see [2], [4], [5], [6]) have used simulation tools (such as
ONE [11]) to understand the effect of protocol parameters on
quality of service for packets. Ramaiyan et al. [12] considered
a vehicular DTN with K = 1, in which packet need not be
copied to the first relay. They study the problem of discovering
the optimal relay on the go. Groenevelt et al. [13] modeled
epidemic relaying and two-hop relaying using Markov chains.
They derived the average delay and the number of copies
generated until the time of delivery. Zhang et al. [14] de-
veloped a unified framework based on ordinary differential



equations (ODEs) to study epidemic routing and its variants.
Altman et al. [15] addressed the optimal relaying problem for
a class of monotone relay strategies which includes epidemic
relaying and two-hop relaying. Singh et al. [16] considered
the tradeoff between delivery delay and number of copies in a
DTN where a single packet has to be transmitted to multiple
destinations. However, in this paper we analyze the case where
multiple packets need to be transmitted to a single destination.

Outline and contributions: We present the DTN model in
Section II. We also state the definitions of the stability region
and the delay metrics in this section. We obtain the stability
region (threshold in the case of single source-destination) for
the DTN without packet delivery feedback in Section III. The
characterization of the stability threshold as a function of
DTN parameters and especially the buffer size is our primary
contribution in this paper. We also discuss the similarities and
differences between our results and [8] in this section. We also
obtain the stability region for a DTN with unit buffer size but
with feedback of packet delivery information in Section IV;
this is a secondary contribution. We then consider the delay
performance of the DTN without packet delivery feedback in
Section V. We obtain an analytical lower bound on the average
queueing delay of packets as well as a lower bound on the
average delivery delay which form secondary contributions.
Simulations of queueing delay and delivery delay in the DTN
and their comparisons with our obtained bounds are also
presented in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a continuous time mobile ad-hoc network
model (see Figure 1) similar to that in [16] and [7]. Our
presentation of the model is similar to that in our prior work
[7]. The time index is denoted as t. We assume that the
network consists of N + 2 mobile nodes, comprising of a
source node, a destination node, and N relay nodes. The
source is assumed to have fixed length packets arriving to
it at the random points of a Poisson point process of rate
λ. The packets have to be transferred to the destination and
are assumed to be queued in an infinite length buffer at the
source. The source transfers the data packets to the destination
through the mobile relay nodes using two-hop relaying. We
assume that the source does not meet the destination directly∗.
We say that a relay has met the source/destination when the
relay node comes within the communication range of the
source/destination.

For improving the delivery delay, we assume that the source
copies each packet to at most K separate relays. We assume
that a relay has a finite buffer which can hold at most B ∈ Z+

packets. When a source meets a relay, the source finds out
whether the relay has a free buffer space or not. If the relay
has a free buffer space, then the source finds out the list of
packet copies that the relay is not currently carrying but which
are there in the source queue and copies one copy of such a

∗This assumption is valid if we have large number of relay nodes,
since the ratio of number of source-relay meetings to the number of source-
destination meetings is O( 1

N
) which is very small.

packet to the relay†. A relay with a free buffer space is said to
be susceptible, while a relay which has a packet copy is said
to be infected by that packet.

A packet is delivered when any of relays infected with that
packet first meets the destination and copies the packet to
the destination. We consider two cases: (a) no-feedback - we
assume that there is no feedback mechanism employed by the
destination by which the source and the infected relays would
get information about packet delivery, and (b) instant-feedback
- we assume that there is instantaneous feedback about packet
delivery from the destination to the source and relay. In the no-
feedback case, we assume that a packet is removed from the
source buffer just after K copies have been made and the relay
buffer space is freed after the relay copies that packet’s copy
to the destination. In the instant-feedback case, we assume that
a packet is removed from the source and relay buffers when
it is first delivered to the destination.

We assume that the intermeeting time processes of relay
nodes with the source and destination nodes are independent,
with each intermeeting time distributed as an exponential
random variable with rate β (an assumption motivated by
[13]). For the rth relay the buffer size at time t is denoted
as Br(t).

Fig. 1: An example network with two relays. The relays store packets
in the buffers as shown. The source and destination communication
ranges are shown as circles centered at the source and destination.
The relative position of relay Ri at four different times is shown
as (Ri,0, . . . , Ri,3). The source copies the packet to R1 (shown at
position R1,1) when it comes within the transmission range. The relay
R1 copies the packet to the destination when it reaches within the
communication range of the destination (shown at position R1,3).

We note that a state space description of the evolution of
the DTN system is complex; the state description contains the
identities of packets in the source queue as well as the number
of packet copies that are yet to be copied to the relays in
addition to the identities of the packets that are carried by all
the relays. This state evolves according to the spray and wait
protocol described above, with the state changing at points of
packet arrivals, source-relay meetings, and relay-destination
meetings.

Our objective is to obtain analytical insights into the stability
of the source queue as well as the different types of delays
experienced by the packets arriving to the source. We denote

†We note that when there is no feedback about packet delivery the source
may copy a packet to a relay which has already delivered a previous copy of
that packet.



the number of packets queued up at the source buffer at time
t as Q(t). The average queue length is then defined as

qq = lim sup
τ→∞

1

τ

∫ τ

t=0

EQ(t)dt,

where the expectation is with respect to the randomness
of arrivals, intermeeting times, and choice of packets when
copying. We say that the source queue is stable if qq < ∞.
We define the stability threshold λ∗ as

λ∗ = sup {λ : qq <∞}.

The stability region is the set of arrival rates [0, λ∗).
We note that the ith packet experiences a waiting delay from

its time of arrival till the first copy is made to a susceptible
relay. In the no-feedback case, we note that the ith packet
stays in the source queue until K copies have been made. We
define the queueing delay Dq,i experienced by the ith packet
as the total waiting time at the source node until the packet has
been copied to K susceptible relays. In the instant-feedback
case, the queueing delay is the minimum of the time from
packet arrival to either the packet delivery or the time till K
copies have been made. We define the delivery delay Dd,i as
the time from when the first copy is made to the earliest time
when any relay infected with a copy of this packet meets the
destination. An illustration of Dq,i and Dd,i is shown in Figure
2. The performance metrics that we are interested in are: (a)
the average queueing delay dq , and (b) the average delivery
delay dd which are defined as the packet averages of Dq,i and
Dd,i respectively over all packets. In the following sections,

Packet arrival
epoch

Packet reaches
queue head of line

Copy of packet
to first relay

Copy of packet
to second relay

Copy of packet
to Kth relay

Epoch of packet delivery
to destination

Delivery Delay (         )

Queueing Delay (           )

Waiting Time 

Fig. 2: Illustration of the queueing delay, and delivery delay expe-
rienced by a packet in our system model for the no-feedback case.
Other important epochs during the time that the packet stays in the
system are also illustrated. We note that it is possible for the packet
delivery epoch to exceed the epoch at which the Kth copy is made.

we obtain the stability threshold λ∗ for the no-feedback and
instant-feedback cases. Then, for the no-feedback case, we
obtain an analytical lower bound for dq and a lower bound
for dd.

III. STABILITY THRESHOLD FOR NO-FEEDBACK

In this section we characterize λ∗ for the no-feedback
system. We first obtain an upper bound on λ∗ by considering
a saturated queue system, i.e., a system with a source queue
which always has packets. We note that the average number
of packet copies made from the source queue or average
number of packet copies delivered to the destination under the

saturated queue assumption is an upper bound to Kλ∗, since
this is the maximum rate of service or maximum throughput
of packet copies. We note that under the saturated queue
assumption each relay’s buffer length process Br(t) evolves
independently according to a CTMC with transition rates as in
Figure 3. The embedded Markov chain (EMC) corresponding
to the above CTMC has transition probabilities which are also
shown in Figure 3. We note that the EMC is periodic. Suppose

.......0 1 B-1 B

Fig. 3: The transition diagram for the CTMC and it’s EMC for the
Br(t) process under saturated queue assumption for no-feedback.
The transition rates for the CTMC are shown along with the transition
probabilities (in parenthesis) for the EMC.

π̂(0), π̂(1), . . . , π̂(B) denote the stationary distribution of the
EMC. Then it can be shown that

π̂(0) = π̂(B) =
1

2B
, and π̂(b) =

1

B
,∀i ∈ {1, . . . , B − 1} .

For the EMC (or a Br(t)), we note that whenever a down-
transition occurs there is a packet copy delivery from relay r
to the destination (or whenever an uptransition occurs there
is a packet copy from the source to relay r). Assuming that
each downtransition leads to a unit reward, the average number
of downtransitions per time or the average number of packet
copies per time is given by the time average reward associated
with the EMC. The time average reward associated with the
EMC can be obtained using Markov renewal reward theorem
[17, Section D.3.3] as

π̂(B) +
∑B−1
b=1

π̂(b)
2

π̂(0)
β + π̂(B)

β +
∑B−1
b=1

π̂(b)
2β

=
B

B + 1
β.

We note that the factor 1
2 multiplies π̂(b) in the numerator

since only one out of the two transitions contributes to the
reward. We note that since there are N relays whose Br(t)
processes evolve independently of each other, an upper bound
on the packet copy throughput is given by B

B+1βN . Since
this is an upper bound on the saturation throughput for packet
copies, we have that λ∗ ≤ B

B+1
βN
K . We now show that this

upper bound is achievable arbitrarily closely by showing that
the average queue length qq <∞ for λ < B

B+1
βN
K . We have

the following result

Theorem III.1. The stability region for the no-feedback
system is

{
λ : λ < λ∗ = B

B+1
βN
K

}
, where λ∗ is the stability

threshold.

The proof is given in Appendix C. We note that for B = 1
we recover the stability region result obtained in our previous
work [7]‡. For B = 1 we have that the stability threshold
is βN

2K . As B → ∞ we have that the stability threshold is

‡We note that recurrence of an underlying CTMC was shown in our
previous work [7] rather than finiteness of the average queue length.



βN
K which is twice what we have for B = 1; thus the stability

threshold only doubles when the buffer size increases from one
to infinity. In fact, in order to achieve 95% of the maximum
value of stability threshold, a buffer size of only 19 is required.
We note that Lee et al. [8]showed that the stability threshold
is Θ(Nβ) for B = ∞ while we obtain that it is exactly Nβ
for K = 1. Using a pooled-buffer assumption [8] also showed
that the stability threshold is Θ

(
B
B+ρNβρ

)
(for a constant

load factor ρ) while we show that it is exactly B
B+1Nβ for

K = 1.

IV. STABILITY PROPERTIES FOR INSTANT-FEEDBACK

In this section we discuss the stability properties of the
instant-feedback DTN. In this case we have results only for
the case where the relays have B = 1, or are extremely
constrained and are able to carry only one packet copy at
a time.

We first obtain an upper bound on the stability threshold by
using a saturated queue assumption as in the case of the system
without feedback. Under the saturated queue assumption, we
have that the average rate of packet copies or the saturation
throughput of packet copies can be obtained from a CTMC
Nr(t), where Nr(t) is the number of relay nodes which are
carrying a packet at time t. The transition diagram of Nr(t) is
shown in Figure 4. We note that the left to right transitions at

.......4 5 N-1 N2 30 1

Fig. 4: The transition diagram for the Nr(t) CTMC for K = 3 under
saturated queue assumption for instant-feedback.

rate nβ in state n are due to any N−n relays without a packet
copy (that is a free buffer space since B = 1) meeting the
source and obtaining a packet copy (there is always a packet
to be copied since the queue is assumed to be saturated). An
important feature of the Nr(t) process is that Nr(t) is also the
number of packet copies which are carried by the relays at a
time t (since B = 1). Suppose Nr(t) = n and n = lK + m,
then we can infer that there are m copies of a packet and
K copies of l different packets in transit. Now since there is
instantaneous feedback, when a relay meets the destination,
the Nr(t) process has a right to left transition of two types.
Again with Nr(t) = n we observe that with rate mβ, any relay
which is carrying one of the m copies of a packet will meet
the destination and then there is a right to left transition of m
steps. Also with rate lKβ any of the relays that are carrying
one of the K copies of one of the l packets will meet the
destination and then there is a right to left transition of K
steps. This is illustrated in Figure 4 for K = 3.

Suppose we associate a reward of 1 unit with every down-
transition in the Nr(t) process. Then the time average reward
is average saturation throughput of packets out of the saturated
source queue and is our upper bound on the stability threshold.

We obtain this time average saturation throughput numerically
by solving for the stationary distribution of the EMC associ-
ated with Nr(t), associating a reward with downtransitions,
and using Markov renewal reward theorem as in the no-
feedback case. However, a closed form expression is yet to
be obtained for the upper bound in this case. We compare
the throughput obtained for instant-feedback systems to no-
feedback for the same N , β, and K values in Figure 5.
Naturally the saturation throughput for systems with instant-
feedback is more than for no-feedback. Although the plots
suggest that the saturation throughput with instant-feedback
is a constant multiple of that with no-feedback, it is not so;
there is still a residual variation with K. We note that even
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Fig. 5: Comparison of the saturation throughput (stability threshold)
for instant-feedback systems (IF) and no-feedback (NF) systems

though the upper bound is not obtained analytically, it can be
shown that the upper bound is achievable arbitrarily closely
using a multislot Lyapunov drift proof as in the no-feedback
case. Intuitively, this is because once the source queue length
is large, then the average service rate out of the source is
described by Nr(t) as in the no-feedback case. Because of
space constraints, here we state without proof that any packet
arrival rate which is strictly less than the above saturation
throughput can be stabilized.

V. DELAY ANALYSIS FOR NO-FEEDBACK

A. Queueing delay

For systems with no-feedback we obtain a lower bound
on the queueing delay of packets at the source queue by
considering another system with the same arrival rate λ but
with infinite relay buffer size.

We consider the arrival process of packet copies rather than
packets to the source queue. From the system model discussed
in Section II we have that the source queue has a batch Poisson
arrival process of packet copies with rate λ and batch size of
K. The packet copy arrival rate is λK. From Theorem III.1
we have that λ∗ = Nβ

K when B →∞. We note that when the
buffer size is infinite and the source queue is saturated, each
time a relay meets a source, there is a packet copy to the relay§.
Suppose we consider a scenario where the arrival rate λ ≈ Nβ

K .
Then we can assume that almost always there is a packet copy
whenever a relay meets a source. Then the service time seen
by a packet copy is exponentially distributed with rate Nβ,

§Since the source queue is saturated, it is possible to find a packet copy
which is not being currently carried by the relay.



and each packet copy’s service time is independent of another.
Thus the source queueing process can be approximated for λ
close to Nβ

K by a M [K]/M/1 system; i.e., a M/M/1 queue
with batch arrivals of size K and exponential service times of
rate Nβ. The average queue length of packet copies is then
[18, Chapter 2, Section 2.10.1]

qq =
ρ(K + 1)

2(1− ρ)
, ρ =

λK

Nβ
.

We note that the service of packet copies is not in first
in first out (FIFO) order in our system. However, since the
above formula has been derived by considering the stationary
distribution of a Markov chain where the state of the chain is
the number of packet copies in the system, the order of service
does not matter. An approximation to the average queue length
of packets is then qq/K. The average queueing delay dq of
packets is then qq/Kλ using Little’s law.

We note that the above approximation for the queueing
delay could be applied to study the queueing delay perfor-
mance of buffered systems where B is large. For extremely
constrained relays (i.e. B = 1) we have presented delay
analysis in [7].

In Figures 6 and 7 we compare the average queueing delay,
obtained using simulations, for systems with B = 1, 5, 10, 100,
and B = 500 with the approximation that we have obtained
above. We observe that the approximate average queueing
delay for B = ∞ is a lower bound to the average queue
lengths for finite B for the same λ. We also compare
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Fig. 6: The average queueing delay experienced by the packets at
the source for a DTN with N = 50, K = 5, and β = 0.1. The
average delay for maximum buffer sizes B = 1, 5, 10, 100, and 500
are compared with the analytical average queue length (lower bound)
obtained for infinite buffer sizes. The stability threshold is 1 for the
infinite buffer case.

the average queueing delay, obtained using simulations, for
systems with B = 100,K = 5, β = 0.1 and arrival rates of 0.8
and 0.85 with the approximation as a function of the number
of relay nodes N in Figure 8. We observe that the analytical
lower bound is close to the simulated values. We compare
the average queueing delay, obtained using simulations, for
systems with B = 100, N = 50 and 100, β = 0.1 and arrival
rate of 0.7 with the analytical lower bound as a function of
the number of copies K in Figure 9. The deviation of the
average queueing delay from the lower bound for larger K
can be explained as follows. For larger K for a fixed N , in
the actual system the nodes would have to wait to meet a relay
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Fig. 7: The average queueing delay experienced by the packets at
the source for a DTN with N = 250, K = 20, and β = 0.5. The
average delay for maximum buffer sizes of B = 1, 5, 10, 100, and
500 are compared with the analytical average queue length (lower
bound) obtained for infinite buffer sizes. The stability threshold is
6.25 for the infinite buffer case.
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Fig. 8: The average queueing delay experienced by the packets at the
source as a function of the number of relay nodes N , for a DTN
with B = 100, K = 5, β = 0.1, and arrival rates of 0.8 and 0.85.

which is not carrying a duplicate copy of a packet. However,
the lower bound does not take care of this particular feature
of the actual system.

5 10 15 20 25 30
0

1

2

3

4

5

6

Number of copies − K

A
v
e
ra

g
e
 q

u
e
u

e
in

g
d

e
la

y
 (

s
e
c
s
)

 

 

Simulation for N = 50

Lower bound for N = 50

Simulation for N = 100

Lower bound for N = 100

Fig. 9: The average queueing delay experienced by the packets at the
source as a function of the number of copies K, for a DTN with
B = 100, λ = 0.7, β = 0.5, and number of nodes N being 50 and
100.

B. Delivery delay

Another component of the delay is the average delivery
delay, which is the expected time taken from the first source
to relay packet copy till the first relay to destination packet
delivery. A lower bound on the average delivery delay can be
obtained using the CTMC shown in Figure 10. The CTMC’s
state is the number of unique relays to which copies of a single
packet has been made. The CTMC models the evolution of



this number in a network with infinite buffers and under the
assumption that there is only one packet in the network at
a time (lone packet assumption). The average delivery delay
for that lone packet is the average time taken for the CTMC
starting in state 1 to hit the special terminating state φ. When
the number of relays is j, the maximum rate at which the
packet will be delivered will be jβ since there are j relays
which can meet the destination to deliver a packet copy. The
use of this maximum rate is one of the reasons why we obtain
a lower bound on the delivery delay in our original system.
The actual delivery would happen only if at a meeting this
particular packet is chosen amongst all the packets to be copied
to the destination; under the lone packet assumption this is
true. We also note that when the number of relays is j there
are (N − j) other relays which the source can meet to make a
new copy of the packet (since all relays are assumed to have
infinite buffer space, such a copy can happen). Suppose t(j)

.......1 K-1 K2

Fig. 10: The transition diagram for the CTMC modelling the number
of unique relays to which a packet has been copied. The expected
time to hit state φ starting from state 1 is the expected delivery delay
of the packet under the lone packet assumption.

represents the expected time to hit φ starting from j. We have
that t(1) is the expected delivery delay. The following set of
equations can be obtained by considering the transitions of the
CTMC in Figure 10.

t(j) =
1

Nβ
+
N − j
N

t(j + 1),

for all j ∈ {1, . . . ,K − 1}. We also note that

t(K) =
1

Kβ
.

We note that we spend on average 1
Nβ time in every state

j ∈ {1, . . . ,K − 1}. Then, we directly hit φ with probability
j/N from j, or with probability (N − j)/N we go to j + 1
from which the expected time to hit φ is t(j + 1).

For the system under consideration, the average delivery
delay would differ from the lower bound due to two reasons:
(a) the rate at which more copies of the packet is made,
once the first copy has been made would be smaller than
assumed since the relays have finite buffers and would be
carrying other packet copies, and (b) the rate at which a copy
would be delivered to the destination when a relay meets the
destination would be less since a particular packet is only one
amongst the packets that are currently carried by the relay, so
the delivery of a particular packet happens with probability
less than one at a relay-destination meeting. We compare the

simulated delivery delay with the lower bound as a function of
λ in Figure 11. We observe that as stated before, the delivery
delay for the system is close to the lower bound at small
arrival rates (since the bound assumes a lone packet). We note
that the average delivery delay does not grow unbounded as a
function of λ (it is always bounded above by 1

β since this is the
average delay with just one relay). As λ increases (consider
B = 1) we observe that the delivery delay approaches its
maximum value. We compare the simulated delivery delay
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Fig. 11: The average delivery delay experienced by the packets at
the source for a DTN with N = 50, K = 5, and β = 0.1. The
average delay for maximum buffer sizes B = 1, 5, 10, 100, and 500
are compared with the lower bound under the lone packet assumption.

with the lower bound as a function of N in Figure 12. We
find that the simulated values and the lower bound coincide.
For large N and B = 100 we expect that the assumptions
made in our derivation of the bound hold. In Figure 13 we
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Fig. 12: The average delivery delay experienced by the packets at the
source as a function of the number of relay nodes N . We consider a
DTN with B = 100, K = 5, β = 0.1, and arrival rates of 0.8 and
0.85.

compare the simulated delivery delay with the lower bound as
a function of K for a fixed N . For a fixed N as K increases,
the source might not meet relays which are not carrying a
duplicate copy of the packet at the transitions rates assumed
in the CTMC shown in Figure 10. We observe that as K
increases the simulated delivery delay deviates from the lower
bound.

VI. CONCLUSIONS

In this paper, we considered the stability properties of a
single source single destination DTN with multiple relay nodes
employing two hop relaying. We considered the effect of the
buffer size employed at the relay on the stability threshold and
obtained that the stability threshold is at most doubled for a
DTN with infinite buffer relays as compared to a DTN with
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Fig. 13: The average delivery delay experienced by the packets at the
source as a function of the number of copies K. We consider a DTN
with B = 100, λ = 0.7, β = 0.5, and number of nodes N being 50
and 100.

unit buffer relays. We employed a multi-slot Lyapunov drift
criterion for obtaining the stability threshold. We also studied
the average queueing delay and average delivery delay in
systems with buffered relays and found that simple analytical
approximations for the average queueing delay can be obtained
for the case where the buffer size is large (compared to our
previous work [7] where we considered unit buffer size). We
also obtained a lower bound on the average delivery delay,
which is observed to be close to the actual when the number
of nodes N is large.
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APPENDIX A
A STOCHASTICALLY LARGER SYSTEM

In this appendix, we show a stochastic dominance result
that is useful for the proof of Theorem III.1. The stochastic
dominance result is obtained by considering a modified Spray
and Wait (SW) protocol that operates as follows. The modified
SW protocol copies packets to relays at relay source meeting
times only if the total number of packet copies in the source
queue is strictly greater than KB ¶. If the total number of
packet copies is less than or equal to KB then no packets are
copied. We denote the system with this modified protocol as
the (D) system, while the original system is denoted as the
(R) system. For the (D) system we also assume that when a
packet arrival occurs so that the total number of packet copies
in the source queue increases above KB then all relay buffers
are instantaneously filled with copies of a dummy packet,
all of which have to be delivered to the destination at relay
destination meeting times. The delivered dummy packets are
discarded by the destination. We now show that the queue
length of packet copies for the (D) system is always greater
than or equal to that in the (R) system.

Lemma A.1. Let QD(t) and QR(t) be the number of packet
copies in the source queue for the (D) system and the (R)
system respectively. Then under the same initial system con-
ditions, sample path of arrivals, source-relay meetings, and
relay-destination meetings we have that QD(t) ≥ QR(t), for
all t ≥ 0.

Proof. We consider the evolution of both (D) and (R) systems
under the same sample path of arrivals, source-relay meet-
ings, and relay-destination meetings. We let A(t) denote the
cumulative number of packet copy arrivals in both the (D)
and (R) system upto time t. Also let SR(t) and SD(t) denote
the cumulative number of packet copies made to the relay, or

¶We choose KB arbitrarily; the smallest such constant for the following
lemma to hold is K(B − 1) + 1.



equivalently the cumulative number of packet copies removed
from the queue for the (D) and (R) system respectively upto
time t.

Suppose at t = 0 the system starts with the same q0 packet
copies and same relay buffer occupancies for both (D) and
(R) systems. Suppose q0 < KB. Until QD(t) reaches KB,
there are no packet copies being made in the (D) system. But
some packet copies are made in the (R) system and those
copies would be removed from the source queue in the (R)
system. We note that until QD(t) reaches KB, the relay buffer
evolution of (D) and (R) evolve in separate ways, with the
(R) system’s relay buffers carrying newer packet copies too;
packets in the (D) system which are copied to the destination
are also copied in the (R) system. We note that with q0 < KB,
there is a time when QD(t) reaches KB from below, since
there are arrivals but there is not service in the (D) system).
During this time SR(t) ≥ SD(t). Since QD(t) = A(t) −
SD(t) and QR(t) = A(t) − SR(t) we therefore have that
QD(t) ≥ QR(t).

Now suppose q0 > KB. Then we note that both (D) system
and (R) system will evolve in the same way till QD(t) = KB.
If QD(t) never reaches KB then we have that QD(t) is always
the same as QR(t) and we are done. Now consider the case
where QD(t) = KB. At this time QR(t) ≤ KB. Then we
note that until the first packet arrives, there is no service from
the (D) system. As in the case discussed before (where we
start with q0 < KB) there will be service in the (R) system
so that until the first arrival after QD(t) = KB we have that
SR(t) ≥ SD(t) and therefore QD(t) ≥ QR(t). Now suppose
a packet arrival occurs. In the (D) system all relay buffers are
filled with dummy packets. Consider the evolution of the (D)
and (R) systems till the time QD(t) hits KB again. Now, we
note that packet copies from the source queue can happen in
both (D) system and (R) system. However, whenever a packet
copy happens in the (D) system there should be a packet copy
opportunity in the (R) system since the sample path of relay-
source meetings are the same in both, and the number of free
buffer spaces in the (D) system is always less than or equal
to the number of free buffer spaces in the (R) system for
every relay. The packet copy opportunity is not used by the
(R) system due to two reasons: (a) there are no packets in
the source queue, in which case QR(t) = 0 or (b) there are
packet copies in the source queue but none can be copied to the
relay since the relay is already carrying a duplicate copy. If (b)
happens then we note that QR(t) < KB, since if the number
of packet copies is greater than or equal to KB then there are
at least B packets in the source queue and a relay with a free
buffer space can at most have B−1 unique packet copies. We
note that if such a packet copy opportunity is not used by the
(R) system then until such a time, we have SR(t) ≥ SD(t) and
therefore QD(t) ≥ QR(t). If such a non-usage occurs, then at
that time instant we have QD(t) > KB and QR(t) < KB.
Starting from that time instant till the next time instant where
such a non-usage occurs or when QD(t) = KB, we repeat the
above argument. Therefore, we obtain that QD(t) ≥ QR(t) for
all t ≥ 0.

APPENDIX B
LYAPUNOV DRIFT FOR FINITE AVERAGE QUEUE LENGTH

Suppose X(t) is a CTMC with positive and bounded
transition rates out of any state. Let Xn be the EMC of X(t).
We consider the evolution of the EMC over frames of size
T slots each (where T is deterministic). We note that if P
is the transition probability matrix of Xn then the process
considered at the frame start times, (X0, XT , X2T , . . . ) is also
a Markov chain with transition probability matrix PT . We have
the following lemma.

Lemma B.1. Suppose L(x) is a Lyanpunov function. If there
exists a positive ε, a constant 0 < K < ∞, and a constant
0 < B <∞ such that for every state x

(a) E
[
L(X(m+1)T )− L(XmT )|XmT = x

]
≤ −εx+B,

(b) EXmT+l ≤ EXmT +Kl, ∀l ∈ {1, . . . , T − 1} and

in every state x for the CTMC there is a possible transition
out of that state with a rate λ that is independent of x, then

lim sup
τ→∞

1

τ

∫ τ

0

EX(t)dt < ∞.

Proof. We note that if there exists a positive ε and a positive
finite B such that for every state x

E
[
L(X(m+1)T )− L(XmT )|XmT = x

]
≤ −εx+B,

then it follows from [17, Section 8.2.1] that

lim sup
M→∞

1

M

M−1∑
m=0

EXmT < ∞.

We now consider lim supτ→∞
1
τ

∫ τ
0
EX(t)dt. We let M =⌊

τ
T

⌋
. We note that 1

τ ≤
1
MT . Therefore

1

τ

∫ τ

0

EX(t)dt ≤ 1

MT

∫ τ

0

EX(t)dt.

We also note that∫ τ

0

EX(t)dt =

M−1∑
m=0

∫ (m+1)T

mT

EX(t)dt+

∫ τ

MT

EX(t)dt. (1)

We note that∫ (m+1)T

mT

EX(t)dt ≤ TEXmT

λ
+
KT 2

λ
,

since the integral is bounded above by considering a process
without any downtransitions and 1/λ is an upper bound on the
expected time for a transition. We also note that the last term
in (1) can be similarly bounded above. We then have that

lim sup
τ→∞

1

τ

∫ τ

0

EX(t)dt ≤

lim sup
M→∞

1

MT

M∑
m=0

[
TEXmT

λ
+
KT 2

λ

]
<∞.



APPENDIX C
PROOF OF THEOREM III.1

We now prove that the average queue length for the source
queue is finite if λ < B

B+1
Nβ
K . We do this by using the

stochastic dominance result from Lemma A.1. We recall
the definitions of the (D) system and the (R) system from
Appendix A; the (R) system is the system under consideration
using the original source Spray and Wait (SW) protocol while
the (D) system uses the modified SW policy which does not
copy any packets if the number of packet copies is less than
KB. We prove that the average queue length for the (D)
system is finite if λ < B

B+1
Nβ
K . Then from Lemma A.1, it

follows that qq < ∞ if λ < B
B+1

Nβ
K for the system under

consideration, which is the (R) system discussed in Appendix
A. For brevity, we use Q(t) to denote the queue length of
packet copies in the (D) system in the following.

We now note that the evolution of the number of packet
copies in the source queue for the (D) system can be described
by a CTMC (S(t) = (Q(t), B1(t), B2(t), · · · , BN (t))), t ≥
0). In Figure 14 we show the transition diagram for the CTMC
for the case of N = 1. We note that when the number of
packet copies in the source queue is more than KB then at
least B packets should be there in the source queue. Then at
a relay meeting time, since a relay with a free buffer space
can carry at most B − 1 packets at least one packet can be
copied to the relay. We do not need fine grained information
about the identities of the packet in the state description of
the queue evolution in this case, which simplifies the state
description compared to the (R) system. We note that for the
(D) system the queue length for the (D) system is bounded
below by KB once KB is hit. Therefore, the CTMC S(t) has
some transient states for which the queue length component of
the state is less than KB. For simplicity, we do not describe
the transient states here. The different transitions that can occur
in the evolution of the CTMC are explained in Figure 14. We
note that for the (R) system when the number of packet copies
is less than KB, the random process S(t) would not be a
CTMC. However, during the time the (R) system has a number
of packet copies greater than or equal to KB, the evolution can
be described using S(t) (the CTMC is shown in Figure 15).
We note that the steady state behaviour of the (R) process is
not described by the CTMC in Figure 15 which necessitates
the use of the (D) system in order to prove stability using
stochastic dominance. We also note from Figures 14 and 15
that for large queue lengths the evolution of the queue length
process is similar in both (D) and (R) systems.

We now consider the (D) system; the evolution of which
for N = 1 is shown in Figure 14. We note that for N > 1
the state space is (N + 1) dimensional with the buffer state
variables Bi(t) being bounded but not the Q(t) variable. There
are similar transitions between states for the general case; for
example, for large enough q, there are N transitions from a
state (q, b1, b2, . . . , bN ) to states of the form (q − 1, b1, bi +
1, . . . , bN ) for every i, each with rate β.

We denote the EMC, embedded at the transition epochs of
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Fig. 14: The transition diagram for the CTMC S(t) for N = 1
for the (D) system; in this case S(t) = (Q(t), B1(t)). Downward
transitions (dashed) at rate λ represent the arrival of a new packet;
since the queue length is the number of copies of a packet note that
the queue length increases by K. Right to left transitions occuring
at rate β are due to the delivery of a packet copy at a destination.
Upward (dotted) transitions at rate β are due to a packet copy from
the source to the relay. There is a special transition from (KB,−)
to (KB+K,B) in the (D) system as all the buffers are assumed to
be filled once an arrival happens when the number of packet copies
is KB.

the CTMC as S[n]. Here n ∈ {0, 1, 2, . . .} indexes the discrete
time instants or slots. We use the following multislot Lyapunov
drift result from Lemma B.1 for the EMC in order to show
that the average queue length is finite for the (D) system. We
divide the evolution of the EMC into frames of length T slots
each; i.e, the first frame consists of the slots (0, . . . , T − 1),
the second of (T, . . . , 2T − 1) and so on. Suppose L(s) is a
Lyapunov function of the state S[n] = s, defined as L(s) = q2,
where q is the queue length component of the state. We have
from [19, Lemma B.1] that if there exists a T , constants c > 0
and d > 0, and it holds that for every k ∈ {0, 1, · · ·}

E [L(Q[kT + T ])− L(Q[kT ])|S[kT ] = s] ≤ c− dQ[kT ],

then qq is finite.

We consider the expected Lyapunov drift of the EMC over
T slots of the EMC where T will be chosen in the following.
The expected drift is:

E
[
(Q[kT + T ])2 − (Q[kT ])2|S[kT ] = s

]
. (2)

We note that for the EMC we can write an evolution equation
for Q[n] as follows:

Q[n+ 1] = Q[n] +A[n]−R[n],

where A[n] ∈ {0,K} and R[n] ∈ {0, 1} are arrival and service
random variables. We note that A[n] and R[n] are dependent
random variables for the EMC since the queue can have an
arrival or a service but not both at a transition epoch in the
CTMC. Furthermore, A[n] and R[n] are dependent on Q[n].
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Fig. 15: The transition diagram for the CTMC S(t) for N = 1 for the
(R) system; in this case S(t) = (Q(t), B1(t)). For the (R) system the
CTMC describes the queue evolution only for the random duration
of time that the number of packet copies is greater than or equal to
KB. The system enters this phase of evolution from states where the
number of packet copies is less than KB and leaves this phase of
evolution from states where the number of packet copies is KB and
with an upward (dotted) transitions at rate β are due to a packet copy
from the source to the relay. Downward transitions (dashed) at rate
λ represent the arrival of a new packet; since the queue length is the
number of copies of a packet note that the queue length increases by
K. Right to left transitions occuring at rate β are due to the delivery
of a packet copy at a destination.

With n = mT , the drift in (2) can be written as

E

(Q[n] +

T−1∑
m=0

(A[m]−R[m])

)2

− (Q[n])2|S[n]

 .
We then have that the drift is

2Q[n]E

[
T−1∑
m=0

(A[m]−R[m])|S[n]

]
+

E

(T−1∑
m=0

A[m]−R[m]

)2

|S[n]

 ,
which can be bounded above as

2TQ[n]E

[∑T−1
m=0(A[m]−R[m])

T

∣∣S[n]

]
+ T (K2 + 1). (3)

We now consider the case of N = 1 to show how to bound
the term E

[∑T−1
m=0(A[m]−R[m])|S[n]

]
. Then we will extend

our method to any N . Consider a slot n at which a T slot
frame starts and suppose Q[n] = q > KB + T . We then
note that since there can at most be T services in T slots, if
q > KB+T then in the T -slot frame starting from n the queue
length will never be KB. We denote the CTMC in Figure 14 as
CTMC(A). For CTMC(A) we observe that starting from such
a q > KB+T any sample path of transitions for T slots can be
obtained by considering another CTMC with self-transitions
(or a semi-Markov process) with a transition diagram as shown

in Figure 16. We will denote this CTMC as CTMC(B). We
note that all transitions in CTMC(A) occur in CTMC(B). The
arrival transition of rate λ in CTMC(A) is the self-transition of
rate λ in CTMC(B). The other transitions in CTMC(B) are the
same as that in CTMC(A). Using CTMC(B) is important since
the sum E

[∑T−1
m=0(A[m]−R[m])

]
can be characterized using

the simpler CTMC(B) rather than the complete CTMC(A). For

.......0 1 B-1 B

Fig. 16: CTMC(B): a simpler CTMC model used for generating
sample paths with the same transitions as the CTMC(A) in Figure
14.

example, we note that
∑T−1
m=0A[m] is K times the number of

downward (λ rate) transitions which happened in CTMC(A) in
T transitions of the CTMC(A), which is equal to the number
of self-transitions which happened in the CTMC(B) in T
transitions of CTMC(B). Similarly,

∑T−1
m=0R[m] is the number

of upward (β rate) transitions which happened in CTMC(A)
in T transitions, which is equal to the number of left to right
transitions in CTMC(B) in T transitions.

Since we are interested in E
[∑T−1

m=0(A[m]−R[m])
T

∣∣S[n]
]
, let

us try to evaluate the above expectation. We denote the EMC
of CTMC(B) as EMC(B). Suppose we assume that a reward
of K is associated with a self transition of EMC(B). We also
assume that there is a reward of −1 associated with a left to
right transition of the EMC(B). Since EMC(B) is aperiodic,
irreducible, and has finite state space, we have that

1

T
E

[
T−1∑
m=0

(A[m]−R[m])
∣∣S[n]

]
= Eπ̂ [A−R] + e(T ),

where π̂ is the stationary distribution of the EMC(B), and A
and R are the arrival and service random variables with the
appropriate marginal joint distribution obtained from π̂, and
e(T ) ↓ 0 as T ↑ ∞. We discuss the exact form of e(T ) later
in the proof.

We will now compute the stationary distribution π̂ of the
EMC(B). We denote the stationary distribution of CTMC(B)
as π. It is important to note that the stationary distribution
of CTMC(B) can be obtained by considering the CTMC(B)
without self loops in which case the transition diagram would
be as in Figure 3. For all b ∈ {0, 1, . . . , B}, we have that the
stationary distribution of the CTMC(B) is π(b) = 1

B+1 . This
connection to CTMCs without self loops is important when
we consider N > 1. We emphasize that CTMC(B) without
self loops is not CTMC(A).

Since π(b) can be interpreted as the fraction of time the
CTMC is in state b we have that

π(b) =
π̂(b)

a(b)
/

B∑
j=0

π̂(j)

a(j)
,



where a(j) is the total transition rate out of state j including
the self transition rate (e.g., a(0) = λ + β, a(1) = λ + 2β).
Then, we have that

π̂(b) = π(b)a(b)/

B∑
j=0

π(j)a(j). (4)

For EMC(B) we obtain that

π̂(0) = π̂(B) =
λ+ β

B(λ+ 2β) + λ
, and

π̂(b) =
λ+ 2β

B(λ+ 2β) + λ
,∀b 6= 0, B.

We note that

Eπ̂A =
∑
b

π̂(b)
λ

a(b)
K =

(B + 1)λK

B(λ+ 2β) + λ
.

Also,

Eπ̂R = π̂(0)
β

a(0)
+

B−1∑
b=1

π̂(b)
β

a(b)
=

Bβ

B(λ+ 2β) + λ
.

We note that if (B + 1)λK < Bβ or if λ < Bβ
(B+1)K then

there exists an ε such that λ+ ε
(B+1)K < Bβ

(B+1)K .

We then have that 1
T E
[∑T−1

m=0(A[m]−R[m])
∣∣S[n]

]
=

−Bβ − ε− (B + 1)Kλ

B(λ+ 2β) + λ
+ e(T )− ε

B(λ+ 2β) + λ
. (5)

For any ε since e(T ) ↓ 0 as T ↑ ∞ we choose a T large
enough so that e(T ) − ε

B(λ+2β)+λ < 0. Then, (5) is denoted
as −d, where d ∈ (0, T ]; the upper bound of T arises since
the drift in T slots cannot be larger than the maximum number
of services in T slots. Then, we have shown that whenever at
the start of a frame of length T if the queue length is such
that Q[n] > KB + T then the expected Lyapunov drift over
T slots is:

≤ −2TQ[n]d+ c1, c1 = T (K2 + 1)

Now suppose we consider those frames for which the queue
length at the start of the frame is less than or equal to KB+T .
For such frames, we note that that the expected Lyapunov drift
is:

≤ −2TQ[n]d+ 2TQ[n]K + 2TQ[n]d+ c1, or,
≤ −2TQ[n]d+ 2KT (KB + T ) + 2T 2(KB + T ) + c1.

Thus for all queue lengths at the start of a frame of length T
slots, we have that the expected Lyapunov drift is

≤ −2TQ[n]d+ c,

where c = 2KT (KB + T ) + 2T 2(KB + T ) + c1. Then from
Lemma B.1 we have that the average queue length for the (D)
system is finite. Thus, for N = 1 we have that if λ < Bβ

(B+1)K
then the (R) system has a finite average queue length, and is
therefore stable.

We now consider the case of general N and also discuss

Fig. 17: A part of the CTMC transition diagram for any N

Fig. 18: A part of the CTMC(B) transition diagram for any N

the form of e(T ). For general N a part of the transition
diagram for the CTMC for S(t) is shown for a q > KB in
Figure 17 (note that some transitions may not exist depending
on whether bi = 0 or B). We denote this CTMC again
as CTMC(A). As in the case of N = 1, for the purpose
of finding out A[m] and R[m] we can consider a simpler
CTMC(B) with self loops which is also shown in Figure
18. We proceed as in the case of N = 1 by obtaining
the stationary probability π̂ of the EMC(B) associated with
CTMC(B). We recall the important fact that the stationary
distribution π of CTMC(B) can be obtained by considering
the CTMC(B) itself without self-loops. We then note that
CTMC(B) without self-loops decomposes into N independent
CTMCs each evolving according to the transition diagram in
Figure 3. We denote the vector (b1, b2, . . . , bN ) by b. Then
we obtain that π(b) = 1

(B+1)N
. Using (4) we have that

π̂(b) = π(b)a(b)/
∑
j

π(j)a(j).

Here a(b) is the total transition rate out of state b which
includes the self transition rate. Suppose b = (b1, b2, . . . , bN )
is such that l of the N buffer values are zero, m of the buffer
values are B. Then we have that a(b) = λ+β(l+m)+2β(N−
(l + m)) since for a particular b every buffer state which is
neither 0 or B can have an up and down transition with rate
β each, and any buffer state which is either 0 or B can have



an up or down transition respectively with rate β. Also, every
state has a self loop of rate λ. Since π(b) = 1

(B+1)N
we have

that

π̂(b) = a(b)/d,

where d =
∑

j a(j).
As for the case of N = 1, we now obtain Eπ̂ [A−R]. We

have that

Eπ̂A =
∑
b

π̂(b)
λ

a(b)
K =

∑
b

λK

d
.

Since the total number of states is (B + 1)N we have that

Eπ̂A = (B + 1)NλK.

For a state b let s(b) represent the transition rate correspond-
ing to a left to right transition. Then we have that

Eπ̂R =
∑
b

π̂(b)
s(b)

a(b)
=
∑
b

s(b)

d

We note that there are BN states or b-s such that s(b) = Nβ;
since every b which is such that no bj = B can have a left
to right transition for any of the N buffer sizes. We also have
that there is NBN−1 states which have s(b) = (N −1)β and
so on. Then, it follows that∑

b

s(b)

d
=

NBβ

d

[N−1∑
n=0

(
N − 1

n

)
BN−1−n

]
=

NBβ(B + 1)N−1

d
.

Therefore, we have that

Eπ̂ [A−R] =
K(B + 1)N

d

[
λ− B

B + 1

βN

K

]
. (6)

Now the drift analysis proceeds in the same way as for N = 1.
We now discuss the exact form of e(T ). We note that

EMC(B) is an aperiodic, irreducible, finite state Markov chain.
If pnij is the n step transition probability of EMC(B) then we
have that

E [A[n]−R[n]] = Epnij [A[n]−R[n]] .

From [20, Theorem 4.4.2] we have that

pnij ≤ π̂(j) + poly(n)µn,

where poly(n) is a polynomial in n and µ is the second
eigen value of the transition probability matrix [p1ij ] which
is less than 1. In our case we therefore obtain that e(T ) =
K ′poly(T )µT which ↓ 0 as T ↑ ∞ and K ′ is a constant.
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