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Abstract

In this thesis, we study the optimal tradeoff of average delay, average service cost, and average

utility for single server queueing models, with and without admission control. The continuous time

and discrete time queueing models that we consider are motivated by cross-layer models for noisy

point-to-point links, with random packet arrivals. We study the above tradeoff problem for a class

of admissible policies, which are monotone and stationary.

The solutions that we obtain for the above tradeoff problem are asymptotic in nature. For example,

suppose we are interested in minimizing the average delay of packets, subject to a constraint on

the average service cost of serving the packets. It is intuitive that to keep the queue stable the

time average service rate of packets has to equal the time average arrival rate of packets. This in

turn implies that queue stability requires a positive minimum average service cost expenditure. We

obtain asymptotic bounds on the minimum average delay in the asymptotic regime < where the

average service cost constraint is a small positive V more than the above minimum average service

cost required for queue stability. We note that such asymptotic bounds can be used to obtain a first

order characterization of the tradeoff curve, and are useful in identifying good families of scheduling

policies, such as buffer partitioning policies.

In this thesis, we obtain asymptotic lower bounds on the minimum average delay in the regime <, for

the cases for which lower bounds were previously not known, for admissible policies. The asymptotic

characterization of the minimum average delay for admissible policies, for both continuous time and

discrete time models, is obtained via new geometric bounds on the stationary probability distribution

of the queue length, in the regime <. The restriction to admissible policies, also enables us to obtain

an intuitive explanation for the behaviour of the asymptotic lower bounds, using the above geometric

bounds on the stationary probability distribution of the queue length. We observe that the shape

of the stationary probability distribution, in the regime <, determines the form of the asymptotic

behaviour.
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It is common practice to approximate a queueing model, where the queue length evolution is on

the non-negative integers, with a queueing model where the queue length evolution is on the non-

negative real numbers and the service cost function being strictly convex, for analytical tractability.

We compare the asymptotic bounds which are obtained for the approximate real valued queue

evolution model with that of the original integer valued queue evolution model. We observe that

for some cases the average delay does not grow to infinity, in the regime <, although the real valued

approximate queueing model, with a strictly convex cost function, suggests that the average delay

should grow without bound in the regime <. In other cases where the average delay does grow to

infinity in the regime <, our results illustrate that the approximate model strictly underestimates

the behaviour of the tradeoff for the original model unless the service cost function is modelled as

the piecewise linear lower convex envelope of the service cost function for the original integer valued

queueing model.

The geometric bounds on the stationary probability distribution of the queue length also lead to

asymptotic bounds on any optimal admissible policy, in the regime <. The asymptotic order bounds

are independent of the exact service cost function, and are not available in previous work. For buffer

partitioning policies, the bounds also show how buffer partitions have to scale with V .

We then apply the above asymptotic lower bounds to the motivating applications, discussed above.

We develop geometric bounds on the stationary probability distribution for admissible policies to

analyse the tradeoff problem in other scenarios, such as: (i)queueing models for N-user single

hop communication networks, (ii)queueing models with non-convex service cost functions, and

(iii)queueing models with general holding costs.
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CHAPTER 1

Introduction

In this thesis, we study the optimal tradeoff of average delay, average service cost, and average

utility for single server queueing models, with and without admission control. The continuous

time and discrete time queueing models that we consider are motivated by cross-layer models for

noisy point-to-point links. The features that we model are: (i)random packet arrivals, (ii)control

of service and/or arrival rates, (iii)packet service costs and/or utility, and (iv)fading at slow and

fast time scales. Our objective is to characterize the minimum average delay of the packets, under

an upper bound constraint on the average service cost and/or a lower bound constraint on the

average throughput for systems with admission control. We are also motivated by the problem

of characterizing the minimum average delay of randomly arriving message symbols which are

transmitted over a noisy point-to-point link with no admission control, under an upper bound

constraint on the average error rate of the message symbols. Such tradeoff problems arise in the

study of cross layer scheduling algorithms for wireless communication networks [45] or in the study

of processor speed scaling [17].

In this thesis, we consider the performance of scheduling algorithms which optimally trade off

average delay with other performance measures, as in [7], [45], and [29]. Related problems include

the design of cross layer scheduling algorithms for: (a) stabilizing a communication network, as in

[73], [74], [41], [26], [15], [38], [63], [66], [64], and [65], or (b) minimizing a delay measure, as in

[79], [40], and [21].

We study the above tradeoff problem for a class of monotone policies, which we call admissible

policies. Monotone policies are stationary policies, i.e., the service rate (and the number of packets

1



admitted, for queues with admission control) at a time is a function1 only of the current state of

the queue2 rather than a function of the whole history of evolution as well as the current state of

the queue. For monotone policies, the expected service rate for a queue length is non-decreasing

as a function of the queue length. Intuitively, if the average delay is to be minimized subject to

a constraint on the average service cost, for deterministic stationary policies, as the queue length

increases, the service rate should also increase. We note that intuitively although the service rate

should increase, the amount by which the service rate increases depends on the corresponding

increase in the service cost. So in practice, monotone policies are usually used. Furthermore, in

certain cases it can be shown that the optimal policy for the above tradeoff problem is in fact

monotone3. Motivated by this reason, as well as the above intuition, we consider the tradeoff

problem for the class of admissible policies only. The class of admissible policies is a subset of the

class of monotone policies, possessing some additional properties, which makes their analysis more

amenable.

We consider several variations of the above tradeoff problem. The solutions to the tradeoff problems

that we address in this thesis are of the following form. Consider an example of an infinite buffer

queueing model with service rate control, but no admission control. We are interested in minimizing

the average delay subject to a constraint on the average service cost. It is intuitive that to keep the

queue stable the time average service rate of packets has to equal the time average arrival rate of

packets. This in turn implies that queue stability requires a positive minimum average service cost

expenditure. We obtain asymptotic bounds on the minimum average delay in the asymptotic regime

< where the average service cost constraint is a small positive V more than the above minimum

average service cost required for queue stability. We note that such asymptotic bounds can be used

to obtain a first order characterization of the tradeoff curve. Furthermore, such bounds can also be

used to identify good families of scheduling policies, as in [7].

We note that asymptotic upper bounds (see [45]) as well as asymptotic lower bounds (see [7]

and [43]) on the minimum average delay in the regime < are available for a variety of queueing

models. However, asymptotic lower bounds are not known in many cases. We obtain asymptotic

lower bounds for the minimum average delay in the regime <, for these cases, for admissible policies.

Additionally, we also obtain asymptotic bounds on the structure of admissible policies which achieve

the above asymptotic lower bounds. The method by which we derive these bounds, which is different

from previous approaches, also leads to geometric bounds on the stationary probability of the queue

length, in the regime <. These bounds have the added advantage of directly providing intuition for

the behaviour of asymptotic lower bounds in the regime <.

Using the above asymptotic lower bounds on the minimum average delay and the already available

1this function could be randomized.
2e.g., the current queue length or the current queue length and an auxiliary state variable such as the fade state.
3The monotonicity property is obtained using a Markov decision theoretic formulation of the tradeoff problem as

in [70], [25], or [7]
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asymptotic upper bounds we obtain a complete asymptotic characterization of the tradeoff between

average delay and average service cost for several single server queueing models, in the regime <,

for admissible policies. We start with an informal introduction to the queueing models and the

tradeoff problems considered in this thesis.

1.1 Introduction to the queueing models and the tradeoff problem

We note that the primary features of the point-to-point links are: (i)random packet arrivals,

(ii)control of service and/or arrival rates, (iii)packet service costs and/or utility, and (iv)fading

at slow and fast time scales. These features are captured by two single server controlled queueing

models in this thesis. Initial insights into the asymptotic behaviour of the tradeoff are obtained

by studying a continuous time queueing model with exponential interarrival times and exponential

service requirements, in Chapters 2 and 3. These insights are used in characterizing the asymptotic

behaviour of the tradeoff for discrete time models in the following chapters.

For the purposes of this introductory discussion, a queue is defined to be stable (or more precisely,

mean rate stable as in [45]) under a policy if the time average service rate equals the time average

arrival rate, although in later chapters we use stronger notions of stability.

In the asymptotic regime <, asymptotic upper and lower bounds on the average delay can be

obtained from asymptotic upper and lower bounds on the average queue length by applying Little’s

law with lower and upper bounds on the average throughput respectively. Therefore, we focus on

the average queue length instead of average delay throughout this thesis.

1.1.1 A continuous time state dependent M/M/1 model

The state dependent M/M/1 queueing model is a birth death process with state being the queue

length, and with state dependent birth (or arrival) rates and death (or service) rates, as shown in

the transition diagram in Figure 1.1. We note that the control policy γ is the choice of the arrival

rates (λ(q), q ∈ Z+) and the service rates (µ(q), q ∈ Z+ \ {0}), as a function of the queue length

q, from sets Xλ and Xµ respectively.

The average queue length Q(γ) for a particular policy γ is the time average of the expectation of

the queue length Q(t), where Q(t) is the state of the birth death process at time t under γ. We

assume that utility is accrued at the rate of u(λ(Q(t))) and service cost is incurred at the rate

of c(µ(Q(t))), where u(λ) is a non-decreasing concave function of λ and c(µ) is a non-decreasing

convex function of µ. For the policy γ, the average utility rate U(γ) and average service cost rate

C(γ) are defined as the time averages of the expectation of the utility rate u(λ(Q(t))) and the

expectation of the service cost rate c(µ(Q(t))) respectively. The general tradeoff problem that we

consider is the minimization of Q(γ), subject to a lower bound constraint uc on U(γ), and an upper
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Figure 1.1: Transition diagram for the continuous birth-death queueing model

bound constraint cc on C(γ), over all policies γ, i.e.,

minimize
γ

Q(γ),

such that U(γ) ≥ uc and C(γ) ≤ cc. (1.1)

In the following, problems in the above constrained optimization form are called constrained tradeoff

problems. We note that one way to analyse the above constrained tradeoff problem is to consider

its unconstrained Lagrange dual, the dual function of which is as follows:

minimize
γ

Q(γ) + β1(C(γ)− cc)− β2(U(γ)− uc), (1.2)

where β1 and β2 are non-negative Lagrange multipliers. In the following, such unconstrained dual

problems are called unconstrained tradeoff problems.

We primarily consider the case where λ(q) is fixed to be a λ ∈ Xλ such that u(λ) ≥ uc, so that the

tradeoff problem reduces to

minimize
γ

Q(γ),

such that C(γ) ≤ cc. (1.3)

We note that as in the case of (1.1), we have the following unconstrained dual function:

minimize
γ

Q(γ) + β1(C(γ)− cc), (1.4)

where β1 ≥ 0.

The optimal values of (1.1) and (1.3), as a function of their respective constraints, are referred to

as the tradeoff curve in the following discussion. We note that in the context of communication

networks, the function u(.) is usually assumed to be linear, so that U(γ) is the average throughput.
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But for other applications, such as those in [5], u(.) could be a strictly concave function.

The optimization problem (1.2) and its variants (such as (1.4)) have been formulated as Markov

decision problems (MDP) and analyzed by many authors, e.g. [5], [70], and [25]. They show

that there exists a monotone optimal policy γ∗(β1, β2) for (1.2) (γ∗(β1, β2) is such that λ(q) is a

non-increasing function and µ(q) is a non-decreasing function of q). Also, from [35], we have that

if cc = C(γ∗(β1, β2)) and uc = U(γ∗(β1, β2)), then γ∗(β1, β2) is also optimal for (1.1). Therefore,

for at least such values of cc and uc there exist monotone optimal policies for (1.1). This motivates

us to consider (1.1) for a class of admissible policies, which are monotone.

The asymptotic regime < : We consider the tradeoff problems (1.1) and (1.3) in the asymptotic

regime < where the average service cost constraint cc is arbitrarily close to the minimum average

service cost required for stability. It turns out that the minimum average service cost required for

stability is c(u−1(uc)) (where the inverse u−1(.) of u(.) is assumed to exist) for (1.1) and c(λ) for

(1.3). Therefore, the asymptotic regimes < for problems (1.1) and (1.3) are defined as the regime

in which cc ↓ c(u−1(uc)) and cc ↓ c(λ) respectively.

1.1.2 A discrete time queueing model

In Chapters 4, 5, and 6, we consider discrete time single server queueing models with random batch

arrivals and batch service. We now introduce a general form of this model, shown in Figure 1.2.

In each slot m ≥ 1, we assume that a random number R[m] of packets arrives into the system,

Random arrivals

Buffer (infinite)

Server serves a batch of 
packets

Admission control

Figure 1.2: The discrete time single server queueing model with a single queue

with an arrival rate of λ per slot. In the mth slot, A[m] ≤ R[m] arrivals are admitted into the

queue, which is assumed to have infinite buffer space. We assume that there is a random process

(H[m]) which models the environment in which the queue is evolving, e.g., this could be the fade

state for a point-to-point wireless link, which stays constant for the duration of a slot. We assume

that H[m] is known at the start of every slot m. The queue length, at the slot boundaries, evolves
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according to the evolution equation:

Q[m] = Q[m− 1]− S[m] +A[m],m ≥ 1,

where Q[0] = q0, S[m] ≤ min(Smax, Q[m− 1]), and A[m] ≤ R[m]. We note that S[m] and A[m]

are the control variables. The service batch size S[m] in slot m is assumed to be chosen as a

randomized function of the history

σ[m] = (q0, H[1], S[1], R[1], Q[1], H[2], S[2], R[2], Q[2], . . . , Q[m− 2], H[m− 1]),

and the current queue length Q[m− 1] and fade state H[m]. while the arrival batch size A[m] in

slot m is assumed to be chosen as a randomized function of the history σ[m], Q[m−1], H[m], and

the current number of arrivals R[m]. The choice of the sequence ((S[m], A[m]),m ≥ 1) constitutes

the policy γ for this discrete time model.

The average queue length Q(γ) for a policy γ is defined to be the time average of the expectation

of the queue length Q[m]. We assume that service cost is incurred at the rate of P (H[m], S[m]) in

slot m, where P (h, s) is a service cost function which is assumed to be non-decreasing and convex

in s for every h. We note that the cost function P (h, s) models the cost incurred in transmission

of packets, e.g., P (h, s) could be the expected number of packets that are received in error when

a batch of s packets are jointly encoded and transmitted when the environment state is h, or

P (h, s) could be the power expended in transmission of s packets when the fade state is h. The

average service cost P (γ) for γ is defined as the time average of the expectation of the service cost

P (H[m], S[m]).

We define the average throughput A(γ) for γ as the time average of the expectation of the admitted

arrival batch size A[m]. The performance measure that we are interested in is the utility of the

average throughput, u(A(γ)), achieved by γ, where u(.) is a non-decreasing and concave utility

function. The general tradeoff problem that we consider is the minimization of Q(γ) subject to a

lower bound constraint uc on u(A(γ)) and an upper bound constraint Pc on P (γ) over all policies

γ, i.e.,

minimize
γ

Q(γ),

such that u(A(γ)) ≥ uc and P (γ) ≤ Pc. (1.5)

As for the state dependent M/M/1 model, we have the following unconstrained dual function:

minimize
γ

Q(γ) + β1

(
P (γ)− Pc

)
− β2

(
u(A(γ))− uc

)
, (1.6)

where β1 and β2 are non-negative.
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As for the state dependent M/M/1 model, we primarily consider the case where A[m] = R[m], i.e.,

with no admission control. Then the tradeoff problem is:

minimize
γ

Q(γ),

such that P (γ) ≤ Pc, (1.7)

where we have assumed that uc is such that λ ≥ u−1(uc) (where the inverse u−1(.) of u(.) is

assumed to exist), so that for stable policies the utility constraint is satisfied. Similar to (1.6), we

have the unconstrained dual function:

minimize
γ

Q(γ) + β1

(
P (γ)− Pc

)
, (1.8)

where β1 ≥ 0. The optimal values of (1.5) and (1.7) as a function of their respective constraints

are referred to as the tradeoff curve in the following discussion.

As for the state dependent M/M/1 model, for the discrete time model, again using a MDP for-

mulation, it is possible to show that (e.g. [7], [29], and [1]) there exists a stationary monotone

optimal policy for (1.6) for each pair of β1 and β2. Again, if uc and Pc are respectively equal to

the utility and average service cost for the above optimal policy (for some β1 and β2), then this

monotone policy is also optimal (see [35]) for (1.5). This motivates us to consider (1.5) for a class

of admissible policies, which are monotone.

The asymptotic regime < : We consider the tradeoff problems (1.5) and (1.7) in the asymptotic

regime < where the average service cost constraint Pc is arbitrarily close to the minimum average

service cost required for stability. It turns out that this minimum average service cost required for

stability is a function of uc and λ for (1.5) and (1.7) respectively. Because of the similarities in its

properties with those of c(.) for the state dependent M/M/1 model, the minimum average service

cost required for stability is denoted as c(.) for (1.5) and (1.7) also. We note that if there is only

one environment state, say h0, then c(s) = P (h0, s). The asymptotic regime < for problems (1.5)

and (1.7) is defined as the regime in which Pc ↓ c(u−1(uc)) and Pc ↓ c(λ) respectively.

A multiqueue model : We also consider a multiqueue single server queueing model, with N

queues being served by a single server as shown in Figure 1.3. The model is a straightforward

generalization of the single queue model discussed above. We assume that there is an environment

variable Hn[m] associated with the nth queue. The vector of N environment variables is denoted as

H[m] = (H1[m], . . . ,HN [m]). The vector of N queue lengths at the start of slot m is denoted as

Q[m−1] = (Q1[m−1], . . . , QN [m−1]). We note that in this case the batch service vector, S[m],

is a vector function of the history σ[m] for the N queues, the current queue length vector Q[m−1],

and the current environment state H[m] as in the single queue case. The batch of arrivals which

are admitted, A[m], is a vector function of the history σ[m] for the N queues, Q[m − 1], H[m],

and the vector of current arrivals R[m].
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The service cost is a scalar function P (h, s) of the service vector s and the environment vector h.

For a particular policy γ, we are interested in the total average queue length Q(γ), which is the sum

of the average queue lengths for the N queues. The average service cost is the time average of the

expectation of P (H[m],S[m]). We also assume that there are individual lower bound constraints

on the u(An(γ)) for each queue. Other definitions are straightforward extensions of the definitions

for the single queue model. The asymptotic regime < for the multiqueue model is similar to that

Random arrivals

Server serves a batch of 
packets from each

queue

Admission control

Figure 1.3: The discrete time single server queueing model with N queues

for the single queue case. We consider the problem of minimizing the average queue length in

the asymptotic regime <, where the scalar cost constraint approaches the minimum average power

required for mean rate stability.

1.2 Literature survey

Tradeoff problems for both continuous time and discrete time single server queueing models has

been addressed by many researchers. To review what is known for such tradeoff problems, let us

consider the problem (1.3). One of the first questions that can be asked is that of feasibility; for

what values of cc are there feasible solutions to (1.3)? Such questions are commonly answered

using Lyapunov drift arguments as in, [45] and [41]. The next question that can be asked is that

of the existence of an optimal policy for (1.3). Such questions are commonly answered by posing

the problem (1.3) as a constrained Markov decision problem (CMDP) as in [68] or [2]. Under

certain technical assumptions, the existence of an optimal policy which is also stationary can be

shown using results as in [2], [28], or [27]. In certain cases, it may be possible to show that there

is a stationary deterministic optimal policy for (1.3)4. In such cases, it is also possible to convert

the CMDP (1.3) into an unconstrained Markov decision problem (MDP) using suitable Lagrange

4Stationary deterministic optimal policies are such that at a time, the service rate (and the arrival rate for models
with admission control) is chosen as a deterministic function of the system state.
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multipliers as in (1.4). For the state dependent M/M/1 model, the approach is then to find an

optimal policy for the above MDP. We note that the optimal policy for (1.3) specifies the optimal

service rate µ∗(q) and arrival rate λ∗(q) as a function of queue length, to operate the system in

order to minimize the time average of the single stage cost rate. Characterization of the optimal

policy using the MDP approach yields structural properties, which are useful in reducing the search

space for the optimal policy, for example see [70], [25], [3], and [5]. Surveys of the above approach

can be found in [32] and [69].

We first review the results which are available for the continuous time model. In most cases, a

monotonicity property of the optimal policy for (1.2) is obtained, i.e., µ∗(q) is a non-decreasing

function of q and λ∗(q) is a non-increasing function of q. Stidham and Weber [70] show that µ∗(q)

is non-decreasing and λ∗(q) is non-increasing, for a state dependent M/G/1 model, where the

objective is to minimize the expected total cost from any initial queue length by serving customers

until the queue length is zero, which is related to the average cost criterion. George and Harrison

[25] show that µ∗(q) is non-decreasing in q, for a state dependent M/M/1 model with a Poisson

arrival process of rate 1, for an MDP of the form in (1.4). Similar results have also been obtained

by Ata in [3], and Ata and Shneorson in [5]. This monotonicity property of µ∗(q) and λ∗(q) is

used to motivate the definition of admissible5 policies in Chapters 2 and 3, which are policies with

non-decreasing service rates µ(q) and non-increasing arrival rates λ(q) as a function of q. We

then obtain an asymptotic characterization of the tradeoff problems (1.1) and (1.3) for the class

of admissible policies. We note that whenever the solution of (1.1) coincides with that of its dual

(obtained by optimizing (1.2) over β1 and β2 ≥ 0), then the optimal policy for (1.1) is admissible.

For the discrete time model, from a CMDP formulation for (1.7), it can be shown that there exists

an optimal policy which chooses the service batch size S[m] as a function S∗(Q[m− 1], H[m]) of

the current queue length and environment state, if the arrival process (R[m]) and the environment

process (H[m]) are IID. The optimal rate or batch size S∗(q, h) which has to be served as a function

of the current queue length q and environment state h, so as to minimize the average queue length for

a given constraint on the average service cost, can be characterized. Berry and Gallager [7], Collins

and Cruz [18], Agarwal et al. [1], and Goyal et.al. [29] consider a fading point to point link with no

admission control, where they study the tradeoff problem (1.7). They use a Lagrangian relaxation

of the CMDP as in (1.8) to obtain that in many cases, S∗(q, h) is a deterministic function s∗(q, h)

which is monotonically non-decreasing in q for every h. The monotonicity property of s∗(q, h) is

used in motivating the definition of admissible policies in Chapters 4, 5, and 6. We obtain an

asymptotic characterization of the tradeoff problems (1.5) and (1.7) for the class of admissible

policies. We note that whenever the solution of (1.5) coincides with that of its dual (obtained by

5Admissible policies are monotone policies. Since admissible policies are stationary, the queue evolution process
under admissible policies is a Markov process. Admissible policies are monotone policies which are such that the
Markov queue evolution process possesses nice properties such as aperiodicity, irreducibility, positive recurrence, and
finite mean queue length.
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optimizing (1.6) over β1 and β2 ≥ 0), then the optimal policy for (1.5) is admissible. A similar

observation holds for the solution of the tradeoff problem (1.7).

Going beyond the above monotonicity property of s∗(q, h), Berry and Gallager [7] also characterized

the asymptotic order behaviour of the tradeoff curve in the regime of large average delay. It was

shown that when the average delay is allowed to be large, the average transmitter power can be

made arbitrarily close to c(λ). It was also shown that if the power P (h, s) expended in transmission

of s packets is a strictly convex function of s for fixed fade state h, then the average queue length

is Ω
(

1√
V

)
if the average transmitter power constraint is V more than c(λ) as V ↓ 0 (this is known

as the Berry-Gallager lower bound). This asymptotic characterization of the average transmitter

power was motivated by the asymptotic characterization of the average distortion of an information

source obtained by Tse [76].

We note that the order behaviour provides a first order characterization of the tradeoff curve. Fur-

thermore, the order characterization provides a criterion to identify a good family6 of transmission

policies. The authors in [7] suggest that the family of buffer partitioning policies achieves the 1
D2

order bound but were unable to prove this. Buffer partitioning policies partition the buffer into

two regions, and use an average batch service rate less than λ in the lower region and an average

batch service rate greater than λ in the higher region to drive the average queue length towards the

partitioning value.

Neely [43] extended the Berry-Gallager lower bound to single hop networks and presented a back-

pressure based (TOCA) algorithm which achieves the lower bound to within a logarithmic factor,

i.e., the algorithm achieves an average delay of O
(

1√
V

log
(

1
V

))
when the average transmitter

power is at most V more than c(λ). Neely [43] also observed that if the transmitter power P (h, s)

is a piecewise linear function of s for every h, then the above rate of increase of the average delay

can be improved. We note that if P (h, s) is piecewise linear in s, ∀h, then the function c(λ) is

a piecewise linear function of λ. If (λ, c(λ)) lies on a linear portion of the function c(.), it was

observed [43] that there is a family of policies for which the average delay is O
(
log
(

1
V

))
if the

average transmitter power is V more than c(λ). It was also observed [43] that for all values of λ

and P (h, s) convex in s, ∀h, there is a family of policies for which the average delay is O
(

1
V

)
if the

average transmitter power is V more than c(λ).

In [44], Neely considered the problem (1.5), with u(x) = x and P (h, s) a strictly convex function

in s for every h. He observed that if the transmitter is allowed to drop a non-zero fraction of the

customers arriving into the queue, such that A(γ) ≥ ρλ, 0 < ρ < 1, then the average queue length

grows only as O
(
log
(

1
V

))
rather than O

(
1√
V

log
(

1
V

))
if the average transmitter power is V more

than c(λ). Extensions to more general networks and other formulations can be found in [45].

6A family of transmission policies is a set of policies with common structure, e.g., a set of parametrized policies
that do not serve below a threshold (parameter) while serving a particular batch size (another parameter) above the
threshold.
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We note that an order optimality result was obtained by Ramaiyan [50] for a particular birth death

queueing model, for the average queue length at the relay node for a two-way relay link using

network coding, in the regime <, for monotone policies. Ramaiyan et al. [51] also obtained the

optimal tradeoff of average queueing delay and average transit delay for a two-hop vehicular relay

network. Asymptotic upper bounds on the minimum average delay for general wireless networks

using network coding, under an average power constraint, was obtained in [16].

An asymptotic upper bound for the tradeoff curve corresponding to (1.7) has been obtained for

the case where (A[m]) and (H[m]) are ergodic Markov processes in [45, Section 4.9] and [30]. In

[45, Theorem 4.12] and [30], it has been shown that if (A[m]) and (H[m]) are ergodic Markov

processes, then for a sequence of Quadratic Lyapunov Algorithm (QLA) policies, parametrized by a

sequence V ↓ 0, the average queue length is O
(

1
V

)
for an average power V more than c(λ). Order

optimality has also been explored for finite buffer systems. In [6, Chapter 6] it is shown that for a

finite buffer discrete time queueing model, as the buffer size B goes to infinity, for any sequence

of policies such that the buffer overflow probability is o
(

1
B2

)
, the average service cost is at least

Ω
(

1
B2

)
more than c(λ).

We note that, for the tradeoff problems (1.5) and (1.7), although asymptotic upper bounds on the

minimum average queue length are known, asymptotic lower bounds are not available in many cases.

We note that such asymptotic lower bounds are significant, since they may help in determining the

best possible tradeoff. Let V be the difference between the average service cost constraint Pc and

the minimum average service cost for stability, c(λ), in the asymptotic regime <, where V ↓ 0. The

known asymptotic lower bounds on the minimum average queue length, along with the details of

the models analysed, and the asymptotic upper bounds on the minimum average queue length are

summarized in Table 1.1.

We note that several asymptotic lower bounds in Table 1.1 have been derived under the assumption

that the queue length and service batch size take values in R+ and the service cost function is

strictly convex. In certain cases, these real valued queueing models are used as approximate models

for queueing models where the queue length and the service batch size take values in Z+. We note

that there are also scenarios, where modelling the queue length evolution to be on R+ is natural,

such as when the queue is assumed to buffer a certain amount of error exponent as in [7].

An approximate solution to the tradeoff problem has been obtained by Ata et al. [4] by approximating

(Q[m]) by a diffusion process, which enables them to find the optimal policy for the control of

the approximating diffusion process in closed form. The complete characterization of the optimal

admission control policy for a continuous time queueing model was obtained in [48].

Bettesh and Shamai [10] obtain approximations for s∗(q, h) for every h, in the regime of large q, by

solving the average cost optimality equation associated with the MDP (1.8). For the MDP (1.8),

Chen et al. [17] obtain approximations for s∗(q) from a fluid approximation. However, we note that
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Model details
Asymptotic upper

bound (Regime <)

Asymptotic lower

bound (Regime <)

1
Berry-Gallager power delay tradeoff [7];

P (h, s) strictly convex in s, ∀h
O
(

1√
V

log
(

1
V

))
Ω
(

1√
V

)

2

Multiuser Berry-Gallager power delay

tradeoff [43]; P (h, s) strictly convex in

s,∀h
O
(

1√
V

log
(

1
V

))
Ω
(

1√
V

)

3

Multiuser Berry-Gallager power delay

tradeoff [43]; piecewise linear c(.), λ is

such that c(λ) is on a piecewise linear

portion of c(.)

O
(
log
(

1
V

)) Ω
(
log
(

1
V

))
shown for

a specific example, not

known in general

4

Multiuser Berry-Gallager power delay

tradeoff [43]; piecewise linear c(.), λ is

any abscissa at which the slope of c(.)

changes

O
(

1
V

)
Not known

5
Power delay tradeoff with lower bound

constraint on average throughput [44]
O
(
log
(

1
V

)) Ω
(
log
(

1
V

))
but with

single fade state

6 Utility delay tradeoff [42] O
(
log
(

1
V

))
Ω
(
log
(

1
V

))
7

Power delay tradeoff with Markov arrival

and fading process [30]
O
(

1
V

)
Not known

Table 1.1: Some of the available asymptotic bounds on the minimum average queue length; except for case

7 all other models assume that the arrival process and the fade process are IID, and except for cases 5 and

6 all models have A[m] = R[m]. Also, all lower bounds are derived under the assumption that the queue

length can take real values.

the bounds on s∗(q) depend on the form of the service cost functions.

Motivated by the above survey of known results, we ask and try to answer the following questions

in this thesis:

1. We note that, in Table 1.1, there are several cases in which asymptotic lower bounds are not

known. What are these asymptotic lower bounds?

2. From Table 1.1, we observe that asymptotic lower bounds have the form of log
(

1
V

)
or 1√

V
.

What is the intuition behind such a behaviour?

3. As stated before, for certain cases, asymptotic lower bounds have been derived for an approx-

imate queueing model, where the queue evolution is real valued. Are the asymptotic lower or

upper bounds different for the original integer valued queue evolution model?

4. Bounds on s∗(q, h0) have been obtained, which are dependent on the service cost function.

However, the asymptotic order bounds on the minimum average queue length are dependent
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only on certain properties of the service cost function, rather than its exact form. Can we

obtain asymptotic order bounds on the policy which are independent of the exact form of the

service cost function?

In the next section, we briefly survey how these issues have been addressed in this thesis.

1.3 Overview of the thesis and contributions

This thesis consists of two parts. In the first part, comprising Chapters 2, 3, and 4, we consider

the tradeoff problems (1.1), (1.3), (1.5), and (1.7) in their respective asymptotic regimes <, for

the class of admissible policies. The second part, comprising Chapters 5 and 6, primarily illustrates

the application of the results obtained in the first part to the motivating resource tradeoff problems

arising in point-to-point communication links.

In this introductory discussion, the results are stated informally. We note that the results hold under

further technical assumptions, which are stated in the respective chapters.

We study the continuous time state dependent M/M/1 queueing model in Chapters 2 and 3. The

main results which are obtained in Chapters 2 and 3 are summarized in Table 1.2. For the first two

cases, let V be the difference between cc and c(λ) in the asymptotic regime <, where V ↓ 0. For

the third case V is the difference between u(µ) and uc, while for the fourth case V is the difference

between cc and c(u−1(uc)). We note that the first two cases are instances of (1.3) while the fourth

case is an instance of (1.1). The third case is similar to (1.3), except that the roles of λ(q) and

µ(q) are interchanged, i.e., there is admission control with a fixed service rate. To the best of

our knowledge, such asymptotic results for the tradeoff for the continuous time state dependent

M/M/1 model, which may be of independent interest, are new. Thus, we obtain answers for the

first question that we posed, for the continuous time queueing models.

The insights obtained from these two chapters are then used in deriving asymptotic lower bounds

for a discrete time model in Chapter 4. The correspondence between discrete time models and the

continuous time models can be achieved by the choice of Xµ, Xλ, and the form of the functions

c(.) and u(.). The motivation behind the choice of Xµ, Xλ, and the form of the functions c(.) and

u(.) is explained in Chapter 3.

From the analysis in Chapters 2 and 3, we obtain the following intuition for the behaviour of

the asymptotic lower bounds, which partly answers the second question that we posed. We note

that for the state dependent M/M/1 model, for admissible policies, it can be shown that the

stationary probability distribution of the queue length exists. The intuition for the behaviour of

the asymptotic lower bounds is based on the shape of this stationary probability distribution in the

asymptotic regime <. We discuss the behaviour of the stationary probability distribution only for

the cases where the minimum average queue length increases to infinity in the regime <.
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Control Service cost and utility functions
Results (in the regime <,

for admissible policies)

Xµ is discrete, Xλ = {λ} c(.) is piecewise linear

Depending on λ, minimum

average queue length either

increases to a finite value, is

Θ
(
log
(

1
V

))
, or Θ

(
1
V

)
Xµ is a finite interval, Xλ =

{λ}
c(.) is strictly convex

Minimum average queue

length is Ω
(

1√
V

)

c(.) is piecewise linear

Depending on λ, minimum

average queue length either

increases to a finite value, is

Θ
(
log
(

1
V

))
, or Θ

(
1
V

)
Xµ = {µ}, Xλ is a finite in-

terval
u(.) is strictly concave

Minimum average queue

length is Ω
(

1√
V

)
u(.) is piecewise linear

Depending on λ, minimum

average queue length is

Ω
(
log
(

1
V

))
, or Ω

(
1
V

)
Xµ is a finite interval, Xλ is a

finite interval

c(.) is strictly convex, u(.) is

strictly concave

Minimum average queue

length is Θ
(
log
(

1
V

))
Table 1.2: List of asymptotic results derived for continuous time queueing models in Chapters 2 and 3.

The behaviour of the stationary probability distribution of the queue length is determined by the

behaviour of the stationary probability distribution of the service rates, which is in turn decided by

the nature of the function c(µ) at µ = λ or u−1(uc) as the case may be. We consider non-idling

admissible policies for the purpose of discussion. We find that in the regime <, the stationary

probability of using a service rate of zero, goes to zero as O(V ). Then, intuitively, since the

probability of this queue being empty goes to zero, the stationary probability distribution shifts to

the right as shown in Figure 1.4. Therefore, the average queue length has to increase. We note

that this intuition has been used in the design of tradeoff optimal policies in [43].

We note that for monotone admissible policies, the stationary probability distribution has the fol-

lowing shape (as in Figure 1.4). The stationary probability distribution is monotonically increasing,

then may or may not be constant for a set of queue lengths, and then is monotonically decreasing.

In the asymptotic regime <, the probability of using certain service rates decreases to zero as O(V ),

while the probability of using certain service rates increases. Consider the set of queue lengths, Qh,

which are such that the stationary probability of using the service rates µ(q), q ∈ Qh does not

decrease to zero. The different behaviours for the minimum average queue length, depends on (i)

the shape of the stationary probability distribution for the set Qh, and (ii) the stationary probability

of the smallest queue length in Qh.
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Figure 1.4: Intuition for the behaviour of the stationary probability distribution in the regime <

Figure 1.5: Possibilities for the behaviour of the stationary probability distribution in the regime <

In the asymptotic regime <, the shape of the stationary probability distribution for the set of

queue lengths Qh, can be either (S1) monotonically increasing, constant, and then monotonically

decreasing, or (S2) constant. We shall see that this is decided by the extent of freedom that we

have in the choice of λ(q) and µ(q). In the asymptotic regime <, the stationary probability of the

smallest queue length in Qh is either (P1) O(V ) or (P2) O(
√
V ). We shall see that this is decided

by the form of the function c(.) at µ = λ or u−1(uc) as the case may be. The various possibilities

are illustrated in Figure 1.5.

Then, the log
(

1
V

)
behaviour for the minimum average queue length arises because the stationary

probability distribution of the queue length is (S1) and the stationary probability of the smallest

queue length in Qh is (P1). The asymptotic 1
V behaviour arises with (S2) and (P1). The asymptotic

1√
V

behaviour arises with (S2) and (P2). Although we discuss this in more detail in Chapters 2 and

3, here we provide an example to illustrate the derivation of the log
(

1
V

)
behaviour. For a particular

policy, we obtain a geometric upper bound of the form π(0)ρq (ρ > 1) on the stationary probability

π(q) of the queue length. In the asymptotic regime < we also show that π(0) = O(V ). Then
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applying Markov inequality we obtain that the average queue length is a constant times log
(

1
V

)
.

We note that these results are obtained using geometric upper bounds on the stationary probability

of the queue length. Under the assumptions that we have made regarding the form of c(.) and

u(.), we therefore observe that the possible forms for asymptotic lower bounds are log
(

1
V

)
, 1
V , or

1√
V

. By providing this intuition, we have successfully answered the second question, for admissible

policies, for the continuous time model.

Using bounds on the stationary probability distribution of queue length, we also obtain asymptotic

bounds on the structure of order-optimal admissible policies7 in the regime <. Since admissible

policies are monotone, we note that corresponding to a set of service rates of S, there is a contiguous

set or interval, QS , of queue lengths such that µ(q) ∈ S,∀q ∈ QS . In both Chapter 2 and Chapter

3, we obtain asymptotic bounds on the cardinality of QS . These bounds are independent of the

exact form of the functions c(.) and u(.). Thus, we obtain some answers for the fourth question

that we have posed, for continuous time queueing models.

In Chapter 2, we also apply the analysis to a flow-level resource allocation model for a wireless

downlink and obtain asymptotic bounds on the tradeoff of average power and average number of

flows.

In Chapter 4, we consider the problem (1.7), with a single environment state (h0), in the asymptotic

regime <. We note that in this case the service cost c(s) = P (h0, s) is a function of the batch size s

only. For admissible policies, it turns out that the stationary distribution of the queue length exists.

Using the insights about the shape of the stationary distribution of the queue length in the regime

< from Chapters 2 and 3, we obtain two upper bounds on the stationary probability distribution of

the queue length, one of which is an extension of the bound on stationary probability distribution

obtained in Bertsimas et al. [9] to the case where the service rate is dependent on the queue length.

The bounds can be used to obtain the same intuition, as explained earlier for the continuous time

model, for the discrete time model. The bounds are used to obtain the results that are summarized

in Table 1.3. Thus, we answer the first and second questions that we have posed, for admissible

policies. The bounds on the stationary probability distribution are also used to obtain asymptotic

bounds on the cardinality of QS , leading to some answers for the fourth question that we have

posed.

We note that our asymptotic results apply to the tradeoff problems in Table 1.1 under the assumption

that the optimal policy lies in the class of admissible policies, which is true for many cases 8.

We also show that approximating the original integer valued queueing model by a real valued model

with a strictly convex function, leads to the average queue length and average service cost being

underestimated, in certain cases. We also analyse a case, which have not been hitherto identified,

7these are admissible policies which achieve the asymptotic lower bounds in Table 1.2.
8For example, whenever the solution to (1.7) coincides with that of its dual (obtained from (1.8)).
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Model details Service cost function
Results (in the regime <,

for admissible policies)

Q[m] evolves on Z+
P (h0, s) is piecewise linear in

s

Depending on λ, minimum

average queue length either

increases to a finite value, is

Θ
(
log
(

1
V

))
, or Θ

(
1
V

)
Q[m] evolves on Z+; A[m] is

ergodic

P (h0, s) is piecewise linear in

s

Depending on λ, minimum

average queue length either

increases to a finite value or

is Ω
(
log
(

1
V

))
Q[m] evolves on R+ P (h0, s) is strictly convex in s

Minimum average queue

length is Ω
(

1√
V

)
(previously

known [7] but re-derived here

using our method).

Table 1.3: List of asymptotic results derived for tradeoff problem (1.7) in Chapter 4 with single environment

state h0.

where the average queue length increases to only a finite value in the asymptotic regime <, for the

original integer valued queueing model. Thus, we obtain some answers to the third question that

we have posed. We also show that a more appropriate real valued approximation is one in which

the service cost function is approximated as the piecewise linear lower envelope of the service cost

function for the original integer valued queueing model.

In Chapter 5, we consider problems (1.7) and (1.5), in the context of a point-to-point link with

fast fading. In this chapter, the environment variable h models the fade state and P (h, s) is the

power expended in transmitting s packets in fade state h. Let V be the difference between the

power constraint Pc and c(λ) (or Pc and c(u−1(uc))) in the asymptotic regime <, where V ↓ 0.

Using the results in Chapter 4, we obtain an asymptotic characterization of the tradeoff. The main

results obtained in this chapter are summarized in Table 1.4. We also comment on the extension

of these asymptotic results to: (a) a N user single hop network model (as in Figure 1.3) with

Qn[m] assumed to evolve on Z+, (b) a model with admission control and ergodic arrival and fading

processes, and (c) a model with no service cost, but for which we are interested in the tradeoff of

utility and delay as in [42]. We note that except for the case where the minimum average queue

length increases to only a finite value (which has been hitherto not identified in literature) we are

able to obtain asymptotic lower bounds for all of the models in Table 1.1 for admissible policies.

We consider the tradeoff of average delay with average error rate for a point-to-point link in Chapter

6. The transmitter is assumed to use fixed or variable-length block coding. In this chapter, we

interpret a packet as an information message symbol, which could be a bit. For fixed length block

coding, we assume that s message symbols are encoded into a codeword of length Nc channel uses.
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Model details Service cost function
Results (in the regime <,

for admissible policies)

Q[m] evolves on Z+, A[m] =

R[m], as in [43]

P (h, s) is piecewise linear in

s, ∀h

Depending on the arrival rate

λ, minimum average queue

length either increases to

only a finite value, or is

Θ
(
log
(

1
V

))
or is Θ

(
1
V

)
Q[m] evolves on R+, A[m] =

R[m], same as the Berry-

Gallager tradeoff problem [7]

P (h, s) is strictly convex in

s, ∀h

Minimum average queue

length is Ω
(

1√
V

)
(previously

known [7] but re-derived here

using our method).

Q[m] evolves on R+, with ad-

mission control, same as the

model in [44]

P (h, s) is strictly convex in

s, ∀h

Minimum average queue

length is Θ
(
log
(

1
V

))
Q[m] evolves on R+, A[m] =

R[m], same as the Berry-

Gallager tradeoff problem [7],

but with ergodic arrival and

fading process

P (h, s) is strictly convex in

s, ∀h

Depending on the value of

λ, minimum average queue

length either increases to only

a finite value or is Ω
(
log
(

1
V

))
Qn[m] evolves on R+ for ev-

ery user n, no admission con-

trol, same as the multiuser

Berry-Gallager tradeoff prob-

lem [43]

P (h, s) is strictly convex in

the vector s,∀h

Minimum average total queue

length is Ω
(

1√
V

)
, individual

average queue length is also

Ω
(

1√
V

)
(previously known

[43] but re-derived here using

our method).
Qn[m] evolves on R+ for ev-

ery user n, admission control
P (h, s) is strictly convex in

the vector s,∀h

Minimum average queue

length is Θ
(
log
(

1
V

))
Table 1.4: The main asymptotic results derived for discrete time queueing models with fading; unless stated

otherwise the models assume that (A[m]) and (H[m]) are IID

We assume that Nc channel uses correspond to one slot. In the context of our discrete time model,

the environment state is fixed (h0) and c(s) = P (h0, s) is the expected number of message symbols

which are decoded in error. The function c(s) is approximated as s times the average block error

probability when s message symbols are transmitted using a random block code of length Nc, where

the average block error probability is further approximated by using Gallager’s random coding upper

bound [22, Chapter 5]. Asymptotic bounds to the optimal average delay for a given average error

rate constraint are obtained as in Chapter 4, although in this case c(s) is a non-convex function of

s. The asymptotic lower bounds obtained in Chapter 4 can be applied to non-convex c(s) through
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the use of the lower convex envelope of c(s).

In Chapter 6, we also consider a single server queueing model, where the codeword length Nc is

a parameter for the policy, i.e., different policies can choose different codeword lengths, but every

transmission uses codewords with the same length. For such models, it is intuitive that by using

arbitrarily large block lengths the average message symbol error rate can be made arbitrarily close

to zero. We show that the exponential decay rate of the average error rate with average queueing

delay is at most 2
3ER(λ) where ER(λ) is the Gallager random coding exponent and λ is the arrival

rate of packets per slot. Furthermore for fixed length block codes, for λ sufficiently close to the

capacity of the point-to-point link, a class of fixed rate service policies is shown to achieve the

decay rate 2
3ER(λ). We then consider a single server queueing model where the service time can

also be varied, to model scenarios where variable length coding is used. For variable length block

codes which constrain the average message symbol error rate by a constant bound on the block

error probability, the class of exhaustive service policies, which transmit all the message symbols in

the queue at a transmission instant, is shown to achieve the decay rate 2
3ER(λ) for any λ.

We summarize the thesis in Chapter 7 and discuss some problems with scope for future work that

are motivated by the analysis carried out in the thesis. The notation that is common to all the

chapters in this thesis is summarized on page xii. The notation that is used in each chapter is

summarized in each chapter.
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CHAPTER 2

On the tradeoff of average queue length, average service cost, and

average utility for the state dependent M/M/1 queue: Part I

2.1 Introduction

We consider the tradeoff between average queue length, average service cost, and average utility for

the continuous time single server queueing model in this chapter and the next. The mathematical

model considered captures the problem of how a constrained/scarce resource should be dynamically

allocated to randomly arriving demands, which may be subjected to admission control, in order

that the system is operated optimally. Herein, this dynamic allocation problem is modelled using

the simple state dependent M/M/1 model discussed in Chapter 1. Our primary motivation for

modelling and studying this tradeoff problem as such, is the variety of tradeoff problems that arise

in resource allocation problems in wireless networks.

The state dependent M/M/1 model that we consider in this chapter is a birth death process with

the state corresponding to the queue length, as reviewed in Chapter 1. In this chapter, we consider

the problem of making the optimal choice of the arrival rate and the service rate at each queue

length, such that the time average queue length is minimized subject to constraints on both the

time average service cost and the time average utility, associated with the service of customers. We

recall that such problems have been analysed in [70], [25], [3], and [5], the results of which have

been discussed in Chapter 1. But unlike the approach in these papers, in this chapter we obtain an

asymptotic characterization of the tradeoff in the regime <. The asymptotic characterization of the

tradeoff is discussed in this chapter and the next. The notation that we use in these two chapters

are summarized in Table 2.1. We first summarize the methodology that is used for obtaining the
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asymptotic bounds.

2.1.1 Methodology

We note that if π(q) is the stationary distribution of the queue length for a policy γ, then

Q(γ) = EπQ. Suppose Pru {Q = q} is any upper bound on π(q). If q is the largest q such that

Pru {Q < q} ≤ 1
2 , then EπQ ≥ q

2 . We obtain Pru {Q = q} for different cases to obtain q. For

example, if c(µ) is piecewise linear then it can be shown that Pru {Q < q} = π(0)ρq, where ρ > 1.

We note that then q is a function of π(0). However, for the tradeoff problem that we consider, it can

be shown that π(0) is proportional to cc− c(λ), i.e. the difference between the average service cost

constraint and the infimum of the average service cost. Then, q
2 ≥ a constant× log

(
1

cc−c(λ)

)
and

therefore so is Q(γ). This leads to the Ω
(

log
(

1
cc−c(λ)

))
asymptotic lower bound for a particular

case.

For deriving asymptotic upper bounds, we consider a sequence of admissible policies. For a par-

ticular policy in the sequence, the derivation of asymptotic upper bounds on average service cost

rate and average utility rate uses upper bounds on stationary probability distribution of the queue

length, whereas in all except one case asymptotic upper bounds on the average queue length are

derived using the Lyapunov comparison theorem [36, Theorem A.4.3]. For several cases, we identify

sequences of order-optimal admissible policies γk, for which the asymptotic growth rates of Q(γk)

matches with the corresponding asymptotic lower bounds. Now we will discuss the model that we

consider in this chapter.

2.1.2 System model

The queue evolves in continuous time, which is denoted by t ∈ R+. The number of customers in the

queue at time t (including the one in service, if any) is denoted by Q(t) ∈ Z+. The state dependent

M/M/1 model for the process Q(t) is a birth death process with birth rate rq,q+1 = λ(q), death

rate rq,q−1 = µ(q) for q ∈ {1, · · · }, and birth rate when there are zero customers in the queue,

r0,1 = λ(0). The state transition diagram of the birth-death process for a policy γ is shown in

Figure 2.1. A policy γ is the sequence (µ(0) = 0, λ(0), µ(1), λ(1) · · · ) 1. The set of all policies is

denoted as Γ.

We associate an utility rate function u(.) with the arrival of customers and a cost rate function

c(.) with their service. The utility rate function models the benefit in serving customers, while the

cost rate function models the cost incurred in serving customers. We assume that utility is accrued

1We note that we are restricting to policies which are stationary. Such a restriction is reasonable for the class of
tradeoff problems that we are interested in.
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Symbol Description

t time index

Q(t) queue length at time t

µ(q) service rate used at queue length q

λ(q) arrival rate used at queue length q

rq1,q2 transition rate from state q1 to q2 for a CTMC

u(.) utility rate function

c(.) service cost rate function

Xµ set of all possible service rates

Xλ set of all possible arrival rates

[ra,min, ra,max] range of values for λ(q)

[0, rmax] range of values for µ(q)

γ a policy

Γ set of all policies

Q(γ) average queue length

C(γ) average service cost rate

U(γ) average utility rate

Γa set of admissible policies

πγ stationary probability distribution for policy γ

Γa,M set of all mixtures of admissible policies

γM a mixture policy

uc constraint on average utility rate

cc constraint on average service cost rate

< asymptotic regime in which cc → u−1(uc)

Q∗M (cc, uc) minimum average queue length over Γa,M under constraints cc and uc

Q∗(cc, uc) minimum average queue length over Γa under constraints cc and uc

βc, βu non-negative Lagrange multipliers corresponding to service cost and utility constraints

Ou set of constraint value pairs (cc, uc) for which admissible policies are optimal

γ∗(cc, uc) optimal policy for constraints cc and uc

Q∗(cc) minimum average queue length for the set Γa service cost constraint cc

πµ(k) stationary probability of service rate µk

µl largest service rate ≤ λ at which the slope of c(.) changes

µu smallest service rate ≥ λ at which the slope of c(.) changes

Q∗M (cc) minimum average queue length for the set Γa,M under service cost constraint cc

Pl {.} lower bound on probability of an event

Pu {.} upper bound on probability of an event

Table 2.1: Notation used in Chapters 2 and 3.
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Figure 2.1: The birth death process under a particular policy γ

at the rate of u(λ(Q(t))) at time t and cost is incurred at the rate of c(µ(Q(t))) at time t. The

functions u(.) and c(.) are assumed to satisfy the following properties :

U1 : The function u(λ) : Xλ → R+ is strictly increasing and concave in λ, with u(0) = 0 and Xλ
the set of arrival rates.

C1 : The function c(µ) : Xµ → R+ is strictly increasing and convex in µ, with c(0) = 0 and Xµ
the set of service rates.

The set Xλ is assumed to be either a) a finite set of discrete points (λ0, λ1, . . . , λK) or b) an

interval [ra,min, ra,max] of the real line. Similarly the set Xµ is assumed to be either a) a finite set

of discrete points (µ0, µ1, . . . , µK) or b) an interval [rmin, rmax] of the real line. If the set Xλ is a

set of discrete points, then we extend the definition of u(λ) to [ra,min = λ0, ra,max = λK ] by linear

interpolation. A similar extension is done for the function c(µ). Note that the linear interpolation

preserves the concavity of u(.) and the convexity of c(.). Let u−1 : R+ → [ra,min, ra,max] and

c−1 : R+ → [rmin, rmax] be the inverse functions of u(.) and c(.) respectively.

The average service cost for the policy γ, C(γ) is defined as

C(γ) = lim sup
T→∞

1

T
E
[∫ T

0
c(µ(Q(t)))dt

∣∣∣∣Q(0) = q0

]
. (2.1)

The average utility for the policy γ, U(γ) is defined as

U(γ) = lim sup
T→∞

1

T
E
[∫ T

0
u(λ(Q(t)))dt

∣∣∣∣Q(0) = q0

]
. (2.2)

The average queue length for the policy γ, Q(γ) is defined as

Q(γ) = lim sup
T→∞

1

T
E
[∫ T

0
Q(t)dt

∣∣∣∣Q(0) = q0

]
. (2.3)

In this chapter, we restrict attention to policies for which the above three performance measures are
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independent of the initial state q0, hence in the above definitions the dependence of these quantities

on q0 is not made explicit. We note that the above definition of average utility (as in [5]) is much

more general and encompasses scenarios where the utility of average throughput is of interest (e.g.

as in [44]).

We note that the state dependent M/M/1 model can be directly applied to study resource allocation

in modern high rate data networks. We consider such a motivational example in the next section.

Thus, the tradeoff problem for the state dependent M/M/1 model can be studied in its own right.

Furthermore, in Chapters 3 and 4, we shall see that the ideas developed for this simple state

dependent M/M/1 model can be used in the study of discrete time queueing models, which in

some cases are more representative of the resource allocation problems in wireless networks.

2.1.3 A motivational example

We discuss a motivating example in this section, which is based on the problem considered by Borst

[13]. We consider the downlink of a base station, operating in slotted time, with each slot of duration

1.67ms. Flows, each a file of size 480Kb, arrive at the downlink scheduler queue for transmission

to different users. We assume that at most one flow arrives in a slot, and the flow arrival process

is an IID Bernoulli process. Each flow is destined to an user, which is one of two types, T1 or T2

with uniform probability. The base station uses a round robin scheduler, which transmits bits from

each flow, in order of their arrival instants. We assume that, if the transmitter is transmitting at

a power level of 10W , then the transmission rate is 50Kb/s for T1 flows, while for T2 flows, it is

150Kb/s. Let r1 = 50Kb/s and r2 = 150Kb/s. The transmitter may dynamically vary its power to

change a multiplier m of the transmission rate whenever a flow arrives or a flow leaves the system.

The transmitter may choose m ∈ M = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}. The multiplier m

is used to model the constraint that each flow may choose a rate corresponding to the choice of a

codebook from a finite set of codebooks. Then the transmission rate is mr1 and mr2 for T1 and T2

flows. As in Borst [13], we assume that the transmission rate as a function of the received SNR is

800 log10(1+SNR)Kb/s. We note that this formula for the transmission rate models a case where

the fading gain is fixed or a case where transmission is done at a fixed rate only if the fading gain

is above a certain threshold. Then the transmitter power is P 1(m) = 64.6
(

10( 50m
800 ) − 1

)
W and

P 2(m) = 18.5
(

10( 150m
800 ) − 1

)
W , when transmitting to receivers with T1 and T2 flows respectively.

We note that as a function of the number of T1 and T2 flows, and therefore the total number of

flows in the system, the actual transmitter power used varies within a round-robin scheduling cycle.

We are interested in dynamically controlling m as a function of the current total number of flows

to minimize the average number of flows in the system (or for a fixed arrival rate, the average flow

transfer latency) subject to a constraint on the average transmitter power.

As in Borst [13] we note that, as the minimum flow transfer time ( 480Kb
300Kb/s) for any flow is of the
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order of seconds while the slot duration is of the order of milliseconds, we can model the system

as a M/G/1-PS (processor sharing) queue, but with control on the total rate of service, through

the choice of m as a function m(q) of the current number of flows q in the system. The Bernoulli

arrival process is approximated as a Poisson process of rate λ. Let us consider the normalized

service requirement for T1 and T2 flows. If a T1-flow is the only flow present in the system, then

it requires a time of 480
50 s if m = 1. Similarly a T2-flow requires a time of 480

150s if m = 1. So the

normalized service requirement of the flows arriving are distributed as 480
50 with probability 0.5 and

480
150 with probability 0.5. The time sharing amongst users manifests itself as processor sharing in

the continuous time model. At a time t, if there are q flows in the M/G/1-PS model, the remaining

service requirement of each flow is reduced at the rate m(q)
q . From Bonald [11, Theorem 2], we

note that for any policy γ, the stationary probability of the M/G/1-PS queue with control on the

service rate, is independent of the service requirement distribution. Therefore, following Borst [13],

we consider a M/M/1-PS queue with control on the service rate, where the service requirement

distribution is exponential, but with the same mean as the service requirement distribution in the

M/G/1-PS queue, i.e, a mean service requirement of 1
2

(
480
50 + 480

150

)
= 6.4s. At a time t, if there

are q flows in this model, the remaining service requirement of each flow is reduced at the rate
m(q)
q . Therefore the rate at which a flow leaves the system is qm(q)

q
1

6.4 . We then note that the

M/M/1-PS queue with state dependent total service rate, determined by the policy γ, is the same

as the model considered in Section 2.1.2. The number of flows in the system is modelled by the

state of the birth-death process. The birth rate is λ, while the death rate which is dependent on q

can take values in S = 1
6.4 × {0, 0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2}.

We note that the average transmitter power used when there are q flows in the system depends on

the proportion of T1 flows and T2 flows. If there are q1 T1 flows when there are q flows in the

system, then the average transmitter power is q1P 1(m)+(q−q1)P 2(m)
q . To obtain good policies which

tradeoff average power with average number of flows for the discrete time system, we analyse the

M/M/1-PS model, under the assumption that the transmitter power is P (m) = P 1(m), irrespective

of the flow which is being transmitted. The model obtained under this assumption is denoted as

M/M/1-PS (I). We also repeat the analysis under the assumption that P (m) = P 2(m), in which

case the model is denoted as M/M/1-PS (II). The results obtained from the analysis of both

M/M/1-PS (I) and M/M/1-PS (II) models are found to be useful in designing policies for the

discrete time system.

2.1.4 Overview

We formulate the tradeoff problem in Section 2.2 for a restricted class of admissible policies. A

non-idling property of any optimal admissible policy is also shown in the same section. We consider
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three cases of the tradeoff problem: FINITE-µCHOICE, INTERVAL-µCHOICE, and INTERVAL-

λµCHOICE, which correspond to different choices of the sets Xλ and Xµ. The analysis of FINITE-

µCHOICE in the asymptotic regime < is carried out in Section 2.3 while INTERVAL-µCHOICE,

and INTERVAL-λµCHOICE are analysed in Chapter 3. For FINITE-µCHOICE, where Xλ = {λ},
we identify three cases based on the value of λ and the set of available service rates {µ0, . . . , µK},
for which the asymptotic behaviour of the tradeoff curve in the asymptotic regime < is different.

Asymptotic lower bounds and upper bounds to the tradeoff problem for these three cases are then

obtained in Section 2.3.1 and Section 2.3.2 respectively. An asymptotic characterization of optimal

policies is presented in Section 2.3.3. We then numerically illustrate the asymptotic behaviour of

the solution to FINITE-µCHOICE for several examples in Section 2.3.4. Asymptotic bounds to the

tradeoff curve for the example in Section 2.1.3 are then presented in Section 2.3.5 using the results

derived in this chapter.

2.2 Problem formulation

In this chapter and the next, we consider the tradeoff problems (1.1) and (1.3) for a restricted class

of admissible policies Γa. The set of admissible policies is defined as follows.

Stability : A policy γ is defined to be stable if the birth death process Q(t) under policy γ is

irreducible and positive recurrent with stationary distribution πγ .

Admissibility : A policy γ is admissible, if

G1 : it is stable,

G2 : the sequence (µ(0), µ(1), µ(2), · · · ) is non-decreasing, and,

G3 : the sequence (λ(0), λ(1), λ(2), · · · ) is non-increasing.

Then we define the set of admissible policies as

Γa
∆
= {γ : γ ∈ Γ, γ is admissible}.

Remark 2.2.1. We note that restricting attention to Γa is reasonable, as the optimal policy which

minimizes the average queue length subject to constraints on the average service cost and average

utility possesses the properties G1, G2, and G3 in many cases (see Chapter 1) 2.

2We note that there exists an admissible policy which achieves the minimum for the constrained optimization
problems (1.1) or (1.3) for certain values of the constraints cc and uc. For example, for (1.1), these values of cc and
uc are such that there exists Lagrange multipliers β1 and β2 for which average service cost and average utility of any
admissible optimal policy for the dual problem (1.2) are equal to cc and uc.
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We note that for any admissible policy, we have that

C(γ) = Eπγc(µ(Q)),

U(γ) = Eπγu(λ(Q)), and

Q(γ) = EπγQ,

where Q ∼ πγ and the performance measures are independent of the initial state q0. We note that

for a policy γ if G2 and G3 holds and if at any finite q′, µ(q′)− λ(q′) = ε > 0, then γ is stable and

therefore admissible.

We note that a larger set of policies can be obtained by mixing the pure policies in Γa. We note

that a mixture policy corresponds to time sharing of pure policies, with the time period, in which a

particular pure policy is used, tending to infinity. The set of policies which are obtained by a finite

mixture of the policies in Γa is denoted as Γa,M . We note that associated with a γM ∈ Γa,M we

have a set Γ(γM ) ⊆ Γa, which is the set of policies which are mixed according to a probability mass

function pγ , for γ ∈ Γ(γM ). For a γM ∈ Γa,M , Q(γM ) =
∑

γ pγQ(γ). The average service cost

rate and average utility rate are defined similarly for γ ∈ Γa,M .

2.2.1 Problem

Our objective is to solve the following optimization problem, TRADEOFF-M:

minimize γ∈Γa,M Q(γ)

such that C(γ) ≤ cc,

and U(γ) ≥ uc, (2.4)

where cc and uc are constraints on the average service cost and average utility respectively. The

optimal value of the above problem is denoted by Q∗M (cc, uc). We note that above constrained

minimization of the average queue length corresponds to the constrained minimization of average

delay if the average arrival rate is fixed.

In the following lemma, we show that TRADEOFF-M can be solved, only for certain values of cc

and uc.

Lemma 2.2.2. If TRADEOFF-M has any feasible solutions, then u−1(uc) ≤ c−1(cc).

Proof. Assume that there is an policy γM ∈ Γa,M which is feasible for TRADEOFF. Then from

Jensen’s inequality we have that c(Epγ
[
Eπγ [µ(Q)]

]
) ≤ Epγ

[
Eπγ [c(µ(Q))]

]
and Epγ

[
Eπγ [u(λ(Q))]

]
≤

u(Epγ
[
Eπγ [λ(Q))]

]
. For brevity let us denote Epγ

[
Eπγ [.]

]
by just E [.] in this proof. There-

fore Eµ(Q) ≤ c−1(Ec(µ(Q))) and u−1(Eu(λ(Q))) ≤ Eλ(Q). As EπγQ < ∞, Eπγµ(Q) =
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Eπgammaλ(Q), ∀γ ∈ Γ(γM ). Therefore for γ, u−1(Eu(λ(Q))) ≤ c−1(Ec(µ(Q))). From the non-

decreasing properties of c(.) and u(.) we have that c−1(.) and u−1(.) are also non-decreasing. Hence

if there is any one feasible policy γ, u−1(uc) ≤ c−1(cc).

If c−1(cc) > u−1(uc), then we show that there exists a feasible policy γ ∈ Γa on a case by case basis

in the following discussion. We note that if c−1(cc) > u−1(uc), then it is not guaranteed that an

optimal policy γ∗(cc, uc) ∈ Γa,M exists for the above problem. However, in the following discussion

we identify a set of (cc, uc) for which the existence of an optimal policy in Γa,M is guaranteed.

Remark 2.2.3. Let βc and βu ∈ R+. Consider an unconstrained MDP denoted as MDP (βc, βu)

as in [5] which is obtained by uniformization at rate ru with single stage cost q+βcc(µ)−βuu(λ)
ru

. Then

from [5] we know that an optimal policy γ∗(βc, βu) ∈ Γa exists for MDP (βc, βu). Let Γ∗(βc, βu) be

the set of all optimal Γa policies for MDP (βc, βu). Also let Γ∗M (βc, βu) be the set of all mixed poli-

cies obtained by a finite mixture of γ ∈ Γ∗(βc, βu). LetOu =
{

(C(γ), U(γ)), γ ∈ Γ∗M (βc, βu), ∀βc, βu ≥ 0
}

.

Then from [35], if (cc, uc) ∈ Ou, then there exists an optimal policy in Γa,M for TRADEOFF-M.

Remark 2.2.4. Suppose (cc, uc) 6∈ Ou, but c−1(cc) > u−1(uc). We note that then for all γM which

are feasible for TRADEOFF-M, Q(γM ) > 0. Hence, for every ε > 0, there exists some feasible γM

such that Q(γM ) < Q∗M (cc, uc) + ε. We call such policies ε-optimal for cc.

We now show that any optimal policy for TRADEOFF-M is non-idling, if it exists.

Lemma 2.2.5. Any optimal mixed policy γ∗(cc, uc) for TRADEOFF-M, has µ(q) > 0 for every

q ≥ 1, for every γ ∈ Γ(γ∗(cc, uc)).

Proof. Let γ ∈ Γ(γ∗(cc, uc)) be an admissible policy with service rate and arrival rate given by

µ(q) and λ(q) respectively for q ≥ 0. Let q0 = max{q : µ(q) = 0}. Assume that for γ, q0 > 0.

As γ is admissible, µ(q) = 0, for all q ≤ q0. Then the states {0, . . . , q0 − 1} are transient under

policy γ. Let γ′ be another policy such that at a queue length q the service rate and arrival rate

are µ′(q) and λ′(q) respectively. For ∀q, let µ′(q) = µ(q + q0) and λ′(q) = λ(q + q0). We note

that the birth-death process under γ′ is obtained by a relabelling of the states under the policy

γ. And γ′ is admissible as γ is admissible. It is clear that U(γ′) = U(γ) and C(γ′) = C(γ), but

Q(γ′) = Q(γ)− q0. Thus any γ such that q0 > 0 cannot be an element of Γ(γ∗(cc, uc)).

Thus in the following we need only consider non-idling admissible policies.

In the following discussion we consider the problem TRADEOFF,

minimize γ∈Γa Q(γ)

such that C(γ) ≤ cc,

and U(γ) ≥ uc, (2.5)
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where we minimize over the set Γa only. The asymptotic bounds on the optimal value for TRADEOFF-

M can be obtained easily from the analysis of TRADEOFF. We now consider three special cases of

TRADEOFF, which are either representative of the problems that arise in the context of communi-

cation networks or are useful in understanding the tradeoff for discrete time queues.

FINITE-µCHOICE:

1. We restrict to policies γ such that λ(q) = λ,∀q ∈ Z+.

2. For any such policy γ, U(γ) = u(λ). We choose λ such that u(λ) ≥ uc.

3. We also restrict to policies γ such that µ(q) ∈ Xµ = {µ0 = 0, µ1, µ2, · · · , µK}, where

µi < µi+1, µK = rmax < ∞. Thus the available service rates take values from a finite

discrete set. We assume that λ < rmax.

4. The optimal value of the tradeoff problem is denoted by Q∗(cc).

INTERVAL-µCHOICE:

1. We restrict to policies γ such that λ(q) = λ,∀q ∈ Z+.

2. For any such policy γ, U(γ) = u(λ). We choose λ such that u(λ) ≥ uc.

3. We restrict to policies γ such that µ(q) ∈ [0, rmax]. Thus the available service rates take

values in a finite interval. We assume that λ < rmax.

4. The optimal value of the tradeoff problem is denoted by Q∗(cc).

INTERVAL-λµCHOICE:

1. We restrict to policies γ such that λ(q) ∈ [ra,min, ra,max], where ra,min ≥ 0, ra,max <∞.

2. We restrict to policies γ such that µ(q) ∈ [0, rmax]. We assume that ra,min < rmax.

We note that for FINITE-µCHOICE and INTERVAL-µCHOICE, the constraint on the average

utility in TRADEOFF is satisfied by the choice of λ, and therefore this constraint is not explicitly

mentioned (as in (1.3)). In the following, we obtain an asymptotic characterization of Q∗(cc)

for FINITE-µCHOICE, while INTERVAL-µCHOICE and INTERVAL-λµCHOICE are analysed in

Chapter 3.
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2.3 Analysis of FINITE-µCHOICE

In the following, we state the motivation for considering FINITE-µCHOICE.

Remark 2.3.1. FINITE-µCHOICE is motivated by the tradeoff problem (1.7) for the following

discrete time queueing model. Customers arrive in a batch of random size, in every slot, into

an infinite length queue. All the customers which arrive in a slot are admitted into the queue.

The number of customers, which are served in each slot, or the service batch size, is chosen as

a deterministic function, of the current queue length. This feature of the discrete time queue is

modelled by the choice of the service rate, µ(q), as a function of q in FINITE-µCHOICE. We assume

that for the discrete time model, the queue evolves on the set of non-negative integers. Hence,

the service batch size also takes values in the set of non-negative integers. The essential feature

here is that the set of batch sizes is discrete and therefore we assume that µ(q) takes values in

a finite discrete set. As there is no admission control in the discrete time model, we assume that

the arrival rate is a fixed λ for every q for FINITE-µCHOICE. In each slot, assume that there is a

service cost incurred in serving the customers. This is modelled by the service cost rate function

c(.) in FINITE-µCHOICE. By analysing FINITE-µCHOICE we illustrate the basic techniques which

are used in the asymptotic analysis of TRADEOFF, which turn out to be useful in the analysis of

problem (1.7).

We now present an asymptotic analysis of FINITE-µCHOICE in the regime <. We note that

part of this analysis was presented in [62]. For brevity, we use π rather than πγ to denote the

stationary distribution corresponding to an admissible policy γ in places where there is no source for

confusion. The stationary probability of queue length being q is denoted by π(q). The stationary

probability of using a rate µk is denoted by πµ(k). We note that πµ(k) =
∑
{q:µ(q)=µk} π(q), and

C(γ) =
∑K

k=0 πµ(k)c(µk). Since c(µ) is convex in µ, by Jensen’s inequality, we have that the

average service cost C(γ) ≥ c(λ), for any admissible policy γ. We note that c(λ) is the minimum

average service cost which has to be expended for the average service rate to be equal to the average

arrival rate, as noted in Chapter 1.

We first obtain an asymptotic lower bound to Q∗(cc) in the regime < as cc ↓ c(λ), by finding a lower

bound on Q(γk), as a function of C(γk)− c(λ), for any sequence of feasible admissible policies γk

with C(γk) ↓ c(λ). Subsequently, we show that there exists a sequence of admissible policies γk for

which C(γk) approaches c(λ) arbitrarily closely, so that c(λ) = infγ∈Γa C(γ).

The asymptotic behaviour of Q∗(cc) for FINITE-µCHOICE depends on the behaviour of c(µ) in

the neighbourhood of µ = λ. We now define quantities µu, ku, µl, and kl, which are related to this
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behaviour.

µu =

min
{
µk : k ≤ K − 1, µk ≥ λ, c(µk+1)−c(µk)

µk+1−µk >
c(µk)−c(µk−1)
µk−µk−1

}
if this set is non-empty,

µK otherwise.

µl =

max
{
µk : k ≥ 1, µk ≤ λ, c(µk+1)−c(µk)

µk+1−µk >
c(µk)−c(µk−1)
µk−µk−1

}
if this set is non-empty,

0 otherwise.

Let µku = µu and µkl = µl. In words, µu is the service rate µku greater than or equal to λ at which

the slope of c(.), considered for service rates in Xµ, changes. A similar interpretation can be given

for µl. Depending upon the value of µl, µu, and their relationship with λ, there are three different

cases that need to be considered (also see Figure 2.2):

FINITE-µCHOICE-1 : µl = 0, λ < µu,

FINITE-µCHOICE-2 : µl ≥ µ1, µl < λ < µu, and

FINITE-µCHOICE-3 : µl ≥ µ1, µl = λ = µu.

Figure 2.2: Illustration of the relationship between λ, µl, and µu along with the minimum average service

cost c(λ) and the line l(µ) for the three cases that arises for FINITE-µCHOICE problem

We now state the motivation for this classification. We note that as the constraint cc approaches

c(λ), if there exists a feasible policy γ with C(γ) ≤ cc, then for that policy the stationary probability

of certain service rates should go to zero. The classification is based on the set of service rates,

whose stationary probability goes to zero. For example, for FINITE-µCHOICE-3, as (λ, c(λ)) is

a corner point, as cc ↓ c(λ), the stationary probability that any service rate other than λ is used

approaches zero. For FINITE-µCHOICE-1 and FINITE-µCHOICE-2, as cc ↓ c(λ), the stationary

probability that any service rate which is less than µl or greater than µu is used, approaches zero.

We note that µu > λ in the case of FINITE-µCHOICE-1 and FINITE-µCHOICE-2, and as cc ↓ c(λ)

the service rate µu > λ could be used, unlike in the case of FINITE-µCHOICE-3 where only µ = λ

can be used. Furthermore we note that for FINITE-µCHOICE-1, µl = 0 and for both FINITE-

µCHOICE-2 and FINITE-µCHOICE-3, µl > 0. Then as cc ↓ c(λ), for FINITE-µCHOICE-1, for a

non-idling γ ∈ Γa, the queue becomes empty infinitely often, while this cannot happen for both

FINITE-µCHOICE-2 and FINITE-µCHOICE-3.
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2.3.1 Asymptotic lower bounds

For an admissible policy γ, for obtaining an asymptotic lower bound on Q(γ) we: a) obtain an upper

bound on πµ(k) for certain values of k in terms of C(γ) and c(λ), b) relate the stationary probability

πµ(k) to the stationary probability of the queue π(q), and c) obtain a lower bound on Q(γ) in terms

of π(q). For the cases FINITE-µCHOICE-1 and FINITE-µCHOICE-2, define the line l(µ) as the

line through the points (µl, c(µl)) and (µu, c(µu)). For the case FINITE-µCHOICE-3, let l(µ) be

any line through (λ, c(λ)) with slope greater than
c(λ)−c(µkl−1)

λ−µkl−1
and less than

c(µkl+1)−c(λ)

µkl+1−λ . The

line l(µ) is illustrated for the three cases in Figure 2.2. We note that c(λ) = l(λ) by construction.

Furthermore Eπµ l(µ(Q)) = l(λ) as l is linear.

We now present an upper bound on the stationary probability of certain service rates as the average

service cost approaches c(λ).

Lemma 2.3.2. Let Rk = {k : µk < µl or µk > µu}. For an admissible policy γ, for all k ∈ Rk,

πµ(k) ≤ C(γ)− c(λ)

c(µk)− l(µk)
.

Proof. We have that C(γ)− c(λ) =
∑K

k=0 πµ(k)[c(µk)− l(µk)]. For k ∈ Rck, c(µk)− l(µk) = 0.

Since c(µk) > l(µk), for all k ∈ Rk, we have that πµ(k) ≤ C(γ)−c(λ)
c(µk)−l(µk) .

A non-idling admissible policy γ is specified by the sequence (q0 = 0, q1, q2, · · · , qK−1, qK =

∞), qk ≤ qk+1, which is such that

µ(q0) = µ(0) = 0

µ(q) = µk, if q ∈ {qk−1 + 1, · · · , qk}, for k ∈ {1, · · · ,K}.

For any k, if qk−1 = qk, then the rate µk is not used by the policy γ. From the definition of πµ(k)

we have that

πµ(0) = π(0),

πµ(k) =

qk∑
q=qk−1+1

π(q), ∀k ≥ 1. (2.6)

In the following we obtain lower bounds on the average queue length Q(γ) as a function of the

upper bounds in Lemma 2.3.2 on stationary probabilities of service rates, when cc−c(λ) = V ↓ 0 for

the three cases FINITE-µCHOICE-1, FINITE-µCHOICE-2, and FINITE-µCHOICE-3 respectively.

We first consider the case FINITE-µCHOICE-1, where kl = 0 and µl = 0.
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Remark 2.3.3. If µu = µK , then we note that c(µ) is a linear function of µ. Then the admissible

policy γ, with µ(0) = 0, and µ(q) = µK for all q ≥ 1, has C(γ) = Ec(µ(Q)) = c(Eµ(Q)) = c(λ).

Furthermore, γ has the minimum average queue length λ
µK−λ . Hence in this case there is no tradeoff

between the average queue length and average service cost. So in the following, we assume c(µ) is

such that µu < µK .

We note that an admissible policy γ, which uses only the service rates {µk, k ∈ {0, · · · , ku}} has

C(γ) =
∑ku

k=0 πµ(k)c(µk) =
∑ku

k=0 πµ(k)l(µk) = c(λ). Furthermore, C(γ) = c(λ) is achieved only

by admissible policies which uses only the service rates {µk, k ∈ {0, · · · , ku}}. Hence, as λ < µu,

the policy γu, that uses µ(0) = 0 and µ(q) = µu for q ≥ 1 has a service cost of c(λ). We note

that γu has the minimum average queue length λ
µu−λ , among all policies γ for which C(γ) = c(λ).

Thus the minimum average queue length, among policies γ for which C(γ) ≤ cc, where cc > c(λ)

is at most λ
µu−λ . We note that if C(γ) > c(λ), then service rates µk with k > ku could be used,

which could yield an average queue length less than λ
µu−λ . In the following lower bound on Q(γ),

we observe that if cc > c(λ), then the average queue length can be less than λ
µu−λ , but has the

limit λ
µu−λ , as C(γ)→ c(λ).

Lemma 2.3.4. For any sequence of non-idling admissible policies γk with C(γk)− c(λ) = Vk ↓ 0,

we have that
λ

µu − λ
−Q(γk) = O

(
Vk log

(
1

Vk

))
.

In the proof, for any sequence of non-idling admissible policies γk, we first show that as Vk =

C(γk)− c(λ) ↓ 0, the largest queue length qku at which service rate µu is used, increases to infinity

as log
(

1
Vk

)
. This asymptotic lower bound is obtained by showing that a lower bound qku,l to qku

increases as log
(

1
Vk

)
. For a Vk, the lower bound qku,l is used to define the policy γ′k, which has

µ(0) = 0, µ(q) = µu for 1 ≤ q ≤ qku,l, and µ(q) = µK for q > qku,l. We note that for any policy

γk with C(γ)− c(λ) = Vk, Q(γk) ≥ Q(γ′k). The sequence Q(γ′k), obtained as Vk ↓ 0, is shown to

have the asymptotic behaviour in the above lemma.

Proof. Let us consider a particular policy γ in the sequence γk with C(γ)− c(λ) = V . As Q(t) is

a birth-death process we have that

π(q − 1) ≤ π(q)
µu
λ
, ∀q ∈ {1, · · · , qku} .

By induction, we obtain that

π(qku −m) ≤ π(qku)
(µu
λ

)m
≤ π(qku + 1)

µK
λ

(µu
λ

)m
,∀m ∈ {0, · · · , qku}.
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Now we note that

qku∑
q=0

π(q) =

ku∑
k=0

πµ(k) = 1−
K∑

k=ku+1

πµ(k)

but

qku∑
q=0

π(q) =

qku∑
m=0

π(qku −m) ≤ π(qku + 1)
µK
λ

qku∑
m=0

(µku
λ

)m
,

and from Lemma 2.3.2, 1−
K∑

k=ku+1

πµ(k) ≥ 1−
K∑

k=ku+1

V

c(µk)− l(µk)
.

Hence

1−
K∑

k=ku+1

V

c(µk)− l(µk)
≤ π(qku + 1)

µK
λ

qku∑
m=0

(µku
λ

)m
,

or 1−
K∑

k=ku+1

V

c(µk)− l(µk)
≤ π(qku + 1)µK

(µku
λ

)qku+1 − 1

µku − λ
,

or
µu − λ
µK

1

π(qku + 1)

1−
K∑

k=ku+1

V

c(µk)− l(µk)

+ 1 ≤
(µu
λ

)qku+1
.

Therefore

qku ≥ log(µuλ )

µu − λ
µK

1

π(qku + 1)

1−
K∑

k=ku+1

V

c(µk)− l(µk)

+ 1

− 1.

But we note that π(qku + 1) ≤
∑K

k=ku+1 πµ(k) ≤
∑K

k=ku+1
V

c(µk)−l(µk)

∆
= V

c1
. So that

qku ≥ log(µuλ )

[
µu − λ
µK

(c1

V
− 1
)

+ 1

]
− 1. (2.7)

Therefore, for any non-idling admissible policy γ we have that qku ≥ qku,l, where

qku,l
∆
=

⌈
log(µuλ )

[
µu − λ
µK

c1

V

[
1− V

c1

]
+ 1

]
− 1

⌉
.

Now we note that for the policy γ under consideration, µ(q) ≤ µu for q ∈ {0, · · · , qku}, and

µ(q) ≤ µK for q ∈ {qku + 1, · · · }. Let policy γ′ be defined as follows :

µ′(q) =


0 if q = 0,

µu if q ∈ {1, · · · , qku,l},

µK otherwise.

We note that Q(γ′) ≤ Q(γ). Let the stationary distribution of CTMC under γ′ be denoted as
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π′(q). Let a
∆
= λ

µu
and b

∆
= λ

µK
. Then we have that

π′(q) =

π′(0)aq if q ∈ {0, · · · , qku,l}

π′(0)aqku,lbq−qku,l otherwise.

We note that γ′ is also admissible. As
∑∞

q=0 π
′(q) = 1, we have that

π′(0)

1 +

qku,l∑
q=1

aq +
∞∑

q=qku,l+1

aqku,lbq−qku,l

 = 1,

π′(0)

[
1 +

a

1− a
(1− aqku,l) + aqku,l

b

1− b

]
= 1. (2.8)

We note that π′(0) can be obtained from (2.8) in terms of qku,l. We have

Q(γ′) =

∞∑
q=0

π′(q)q = π′(0)

qku,l∑
q=1

qaq +

∞∑
q=qku,l+1

qaqku,lbq−qku,l

 .
Simplification leads to

Q(γ′) = π′(0)

[
a

(1− a)2
((1− a)(1− (qku,l + 1)aqku,l) + a(1− aqku,l)) + aqku,l

(
qku,l

b

1− b
+

b

(1− b)2

)]
,

=

[
a

(1−a)2 ((1− a)(1− (qku,l + 1)aqku,l) + a(1− aqku,l)) + aqku,l
(
qku,l

b
1−b + b

(1−b)2

)]
[
1 + a

1−a (1− aqku,l) + aqku,l b
1−b

] (2.9)

where π′(0) was obtained from (2.8). At this point, we note that as V → 0, qku,l → ∞ and

this lower bound Q(γ′) to Q(γ) approaches a
1−a , which is what we expect. However, in order to

ascertain the behaviour of average queue length as V approaches zero, we need to lower bound the

right-hand side of (2.9) for V > 0.

The denominator of (2.9) can be bounded above as follows :

1 +
a

1− a
− a

1− a
aqku,l +

b

1− b
aqku,l

= 1 +
a

1− a
+ aqku,l

[
1

1
b − 1

− 1
1
a − 1

]
.

As b < a, 1
1
b
−1

< 1
1
a
−1

, so that the denominator of (2.9) ≤ 1
1−a . After substituting this upper
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bound for the denominator in (2.9), we have

Q(γ′) ≥ (1− a)

[
a

(1− a)2
{1− (1− a)(qku,l + 1)aqku,l − a.aqku,l}+ aqku,l

{
qku,l

b

1− b
+

b

(1− b)2

}]
,

=
a

1− a
+ (1− a)

[
aqku,l

{
qku,l

b

1− b
+

b

(1− b)2

}
− a

(1− a)2
{(1− a)(qku,l + 1)aqku,l + a.aqku,l}

]
,

≥ a

1− a
− a

1− a
aqku,l [1 + (1− a)qku,l] . (2.10)

From (2.7), with a < 1, we have that

aqku,l ≤ 1

a
a

log 1
a

[
µu−λ
µK

( c1V −1)+1
]
,

=
1

a

[
a

loga

[
µu−λ
µK

( c1V −1)+1
]] 1

loga(1/a)

,

=
1

a

[
µu−λ
µK

(c1 − V ) + V

V

]−1

,

=
1

a

1
µu−λ
µK

(
c1
V − 1

)
+ 1

.

From the definition of qku,l we have that

qku,l ≤ log(µuλ )

[
µu − λ
µK

(c1

V
− 1
)

+ 1

]
Therefore, aqku,l(1 + (1− a)qku,l) ≤

1

a

1
µu−λ
µK

(
c1
V − 1

)
+ 1

(
1 + (1− a)

{
log(µuλ )

[
µu − λ
µK

(c1
V
− 1
)

+ 1

]})

Substituting this in (2.10) we have that a
1−a −Q(γ′) ≤

a

1− a

Va 1

µu−λ
µK

c1

(
1− V

c1

)
+ V

(
1 + (1− a)

{
log(µuλ )

[
µu − λ
µK

(c1
V
− 1
)

+ 1

]}) . (2.11)

Thus, for a sequence γk such that Vk ↓ 0, we have that a
1−a −Q(γk) = O

(
Vk log

(
1
Vk

))
.

Corollary 2.3.5. For any sequence of non-idling admissible policies γM,k ∈ Γa,M with C(γM,k) −
c(λ) = Vk ↓ 0, we have that

λ

µu − λ
−Q(γM,k) = O

(
Vk log

(
1

Vk

))
.

Proof. For a k, if γM,k is such that C(γM,k)−c(λ) = Vk, then we have that for every γk ∈ Γ(γM,k),
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C(γk)− c(λ) ≤ Vk
pγk

= Uγk . Then

λ

µu − λ
−Q(γk) = O

(
Uγk log

(
1

Uγk

))
.

We note that Q(γk,M ) = EpγkQ(γk). Then applying Epγk to LHS and RHS of the above equation

we obtain that
λ

µu − λ
−Q(γk,M ) =

∑
pγk

[
O
(
Uγk log

(
1

Uγk

))]
.

We note that by definition, there exists some constant c > 0 such that the RHS is

≤
∑

pγk

[
c

[
Uγk log

(
1

Uγk

)]]
.

Since the function u log
(

1
u

)
is concave, we have that

∑
pγk

[
c

[
Uγk log

(
1

Uγk

)]]
≤ c

∑
pγk [Uγk ] log

(
1∑

pγk [Uγk ]

)
.

Since
∑
pγk [Uγk ] = Vk we have that

λ

µu − λ
−Q(γM,k) = O

(
Vk log

(
1

Vk

))
.

We now present asymptotic lower bounds for FINITE-µCHOICE-2 and FINITE-µCHOICE-3. For

an admissible policy γ, to relate the stationary probability distribution π(q) to the average queue

length Q(γ), as noted in Section 2.1.1 we make use of the fact that if q is such that
∑q

q=0 π(q) ≤ 1
2 ,

then Q(γ) ≥ q
2 . The choice of 1

2 here is arbitrary. The best lower bound on Q(γ) is given by the

largest q such that
∑q

q=0 π(q) ≤ 1
2 .

Lemma 2.3.6. For any sequence of non-idling admissible policies γk with C(γk)− c(λ) = Vk ↓ 0,

we have that

Q(γk) =

Ω
(

log
(

1
Vk

))
for FINITE-µCHOICE-2,

Ω
(

1
Vk

)
for FINITE-µCHOICE-3.

(2.12)

Proof. We note that kl ≥ 1 for the cases FINITE-µCHOICE-2 and FINITE-µCHOICE-3. Con-

sider a particular policy γ in the given sequence γk, with C(γ) − c(λ) = V . Then we note

that
∑kl−1

k=0 πµ(k) ≤
∑kl−1

k=0
V

c(µk)−l(µk)

∆
= V

c′1
, from the upper bound in Lemma 2.3.2. There-

fore,
∑qkl−1

q=0 π(q) =
∑kl−1

k=0 πµ(k) ≤ V
c′1

. Also, for every q ∈ {0, · · · , qkl−1}, π(q) ≤ V
c′1

. Now

we intend to find the largest q such that
∑q

q=0 π(q) ≤ 1
2 . But as

∑qkl−1

q=0 π(q) ≤ V
c′1

and
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π(qkl−1 + 1) ≤ π(qkl−1) λµl ≤
λV
µlc
′
1

, the largest such q satisfies

q∑
q=qkl−1+1

π(q) ≤ 1

2
− V

c1

In the following, we use an upper bound on π(q) which leads to a lower bound q1 on q. Since

π(q)λ = π(q + 1)µ(q), and for q > qkl ,
λ
µ(q) <

λ
µl

(from the admissibility of γ), we have that

q∑
q=qkl−1+1

π(q) < π(qkl−1)

q−qkl−1∑
m=1

(
λ

µl

)m
.

If q1 is the largest integer such that

π(qkl−1)

q1−qkl−1∑
m=1

(
λ

µl

)m
≤ 1

2
− V

c′1
, (2.13)

then
∑q1

q=0 π(q) ≤ 1
2 and q ≥ q1.

In the case FINITE-µCHOICE-2, λ > µl, so that summing the geometric series in (2.13), we have

that (
λ

µl

)q1−qkl−1

− 1 ≤ λ− µl
λπ(qkl−1)

(
1

2
− V

c′1

)
or (2.14)

q1 ≤ qkl−1 +

[
log( λ

µl

)(1 +
λ− µl

λπ(qkl−1)

(
1

2
− V

c′1

))]
,

and, in fact,

q1 =

⌊
qkl−1 + log( λ

µl

)(1 +
λ− µl

λπ(qkl−1)

(
1

2
− V

c′1

))⌋
.

Since qkl−1 ≥ 0, we have that

q1 ≥ log( λ
µl

)(1 +
λ− µl

λπ(qkl−1)

(
1

2
− V

c′1

))
− 1

Now since π(qkl−1) ≤ πµ(kl) ≤ V
c(µkl−1)−l(µkl−1) we have that

q1 ≥ log( λ
µl

)(1 +
(λ− µl)(c(µkl−1)− l(µkl−1))

λV

(
1

2
− V

c′1

))
− 1

Then we have that

Q(γ) ≥ q

2
≥ q1

2
≥ 1

2
log( λ

µl

)(1 +
(λ− µl)(c(µkl−1)− l(µkl−1))

λV

(
1

2
− V

c′1

))
− 1

2
(2.15)
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Thus for FINITE-µCHOICE-2, we have that Q(γk) = Ω
(

log
(

1
Vk

))
.

For FINITE-µCHOICE-3, λ = µl, so that from (2.13), instead of (2.14) we have that

q1 − qkl−1 ≤
1

π(qkl−1)

(
1

2
− V

c′1

)
,

and, in fact,

q1 =

⌊
qkl−1 +

1

π(qkl−1)

(
1

2
− V

c′1

)⌋
.

Proceeding as for FINITE-µCHOICE-2, we have that

q1 ≥
c(µkl−1)− l(µkl−1)

V

(
1

2
− V

c′1

)
.

Therefore we have that

Q(γ) ≥ q

2
≥ q1

2
≥ 1

2

[
1 +

c(µkl−1)− l(µkl−1)

V

(
1

2
− V

c′1

)]
. (2.16)

Hence for FINITE-µCHOICE-3, we conclude that Q(γk) = Ω
(

1
Vk

)
.

Corollary 2.3.7. For any sequence of non-idling admissible policies γk,M ∈ Γa,M with C(γk) −
c(λ) = Vk ↓ 0, we have that

Q(γk,M ) =

Ω
(

log
(

1
Vk

))
for FINITE-µCHOICE-2,

Ω
(

1
Vk

)
for FINITE-µCHOICE-3.

(2.17)

The proof of this corollary is very similar to that of Corollary 2.3.5, except that the convexity

property of the functions log
(

1
u

)
and 1

u are used instead of the concavity of the function u log
(

1
u

)
.

2.3.2 Asymptotic characterization of Q∗M(cc)

In this section we obtain asymptotic upper bounds for TRADEOFF-M. The sequence of policies

that is constructed for FINITE-µCHOICE-1 is motivated by the policy γ′ that was used in the proof

of the lower bound. We shall see that a sequence of policies with qku scaling as log
(

1
V

)
gives the

correct asymptotic upper bound.

Lemma 2.3.8. For FINITE-µCHOICE-1, there exists a sequence of non-idling admissible policies

γk with a sequence Vk ↓ 0 such that λ
µu−λ −Q(γk) = Θ

(
Vk log

(
1
Vk

))
and C(γk)− c(λ) = Vk.
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Proof. We first consider a policy γ in the sequence of policies γk. The policy γ is defined as follows:

µ(0) = 0,

µ(q) = µu, for q ∈ {1, . . . , qku},

µ(q) = µK , for q ∈ {qku + 1, . . . }.

The sequence of policies γk, k ≥ 1 is obtained by choosing qku = k. Consider the policy γ. As∑∞
q=0 π(q) = 1 we have that

π(0)

[
1 +

λ

µu − λ

(
1−

(
λ

µu

)qku)
+

(
λ

µu

)qku λ

µK − λ

]
= 1

Therefore, we obtain that

π(0) =
1

1 + λ
µu−λ +

(
λ
µu

)qku [ λ
µK−λ −

λ
µu−λ

] , and

πµ(K) =
∞∑

q=qku+1

π(q) =

(
λ
µu

)qku λ
µK−λ

1 + λ
µu−λ +

(
λ
µu

)qku [ λ
µK−λ −

λ
µu−λ

] . (2.18)

From the definition of C(γ) we have that

C(γ) = πµ(ku)c(µu) + πµ(K)c(µK),

= πµ(ku) (c(λ) +m1(µu − λ)) + πµ(K) (c(λ) +m2(µK − λ)) ,

= c(λ)(1− π(0)) +m1(µu − λ)πµ(ku) +m2(µK − λ)πµ(K),

= c(λ)− π(0)c(λ) +m1(µu − λ)(1− πµ(K)− π(0)) +m2(µK − λ)πµ(K).

C(γ)− c(λ) = m1(µu − λ) + πµ(K) [m2(µK − λ)−m1(µu − λ)]− π(0) [c(λ) +m1(µu − λ)] ,

(2.19)

where m1 = c(µu)−c(λ)
µu−λ and m2 = c(µK)−c(λ)

µK−λ . We denote C(γ) − c(λ) by V . We note that

c(λ) +m1(µu − λ) = c(µu) and m2(µK − λ)−m1(µu − λ) = c(µK)− c(µu). Then (2.19) can be

written as

V = m1(µu − λ) + πµ(K) (c(µK)− c(µu))− π(0)c(µu),

V −m1(µu − λ) =

(
λ
µu

)qku λ
µK−λ (c(µK)− c(µu))− c(µu)

1 + λ
µu−λ +

(
λ
µu

)qku [ λ
µK−λ −

λ
µu−λ

] .
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Simplifying, we obtain, with c(λ) = m1λ,

[V −m1(µu − λ)]
[
1 + λ

µu−λ

]
+ c(µu)

λ
µK−λ (c(µK)− c(µu))−

[
λ

µK−λ −
λ

µu−λ

]
(V −m1(µu − λ))

=

(
λ

µu

)qku
,

C(γ) µu
µu−λ −

λ
µu−λ (c(λ) +m1(µu − λ))

λ(m2 −m1)−
(

λ
µK−λ −

λ
µu−λ

)
(C(γ)− c(λ))

=

(
λ

µu

)qku
,

so that,

qku = log(µuλ )

λ(m2 −m1)−
(

λ
µK−λ −

λ
µu−λ

)
V

V µu
µu−λ

 .
We note that the average queue length for the policy γ is of the form given in (2.9), wherein a = λ

µu

and b = λ
µK

. Simplifying this expression, we obtain that

Q(γ) =

a
(1−a)2 + qkua

qku

[
b

1−b −
a

1−a

]
+ aqku

[
b

(1−b)2 − a
(1−a)2

]
1

1−a + aqku
[

b
1−b −

a
1−a

] . (2.20)

We are interested in only order approximations of Q(γ); so we proceed by considering large k, so

that V ↓ 0 and aqku ↓ 0. We obtain that (only the dominant terms as V ↓ 0)

Q(γ) ≈
(

a

1− a
+ qkua

qku (1− a)

[
b

1− b
− a

1− a

]
+ aqku (1− a)

[
b

(1− b)2
− a

(1− a)2

])
×
(

1 + aqku (1− a)

[
a

1− a
− b

1− b

])
.

Expanding, we obtain

Q(γ) ≈ a

1− a
+

a

1− a
aqku (1− a)

[
a

1− a
− b

1− b

]
+ qkua

qku (1− a)

[
b

1− b
− a

1− a

]
(2.21)

+aqku (1− a)

[
b

(1− b)2
− a

(1− a)2

]
(2.22)

−qkua2qku (1− a)2

[
a

1− a
− b

1− b

]2

+ a2qku (1− a)2

[
a

1− a
− b

1− b

] [
b

(1− b)2
− a

(1− a)2

]
.(2.23)

We note that the second term in (2.21) is positive and Θ(V ), while the third term is negative and

Θ
(
V log

(
1
V

))
. The term in (2.22) is negative and Θ(V ). The first term in (2.23) is negative

and Θ
(
V 2 log

(
1
V

))
, while the second term is negative and Θ(V 2). Thus, the dominating term

in a
1−a − Q(γ) is positive and Θ

(
V log

(
1
V

))
as V ↓ 0. Hence we have that a

1−a − Q(γ) =

Θ
(
V log

(
1
V

))
.

We note that every γk constructed, by choosing qku = k, is non-idling and admissible. So, there
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exists a sequence of non-idling admissible policies γk such that λ
µu−λ −Q(γk) = Θ

(
Vk log

(
1
Vk

))
and C(γ)− c(λ) = Vk.

Using the asymptotic lower bound on Q(γk) from Corollary 2.3.5, and the above asymptotic upper

bound, we have the following result.

Proposition 2.3.9. For FINITE-µCHOICE-1, we have that the optimal value of the tradeoff problem

Q∗M (cc,k) is λ
µu−λ −Θ

(
(cc,k − c(λ)) log

(
1

cc,k−c(λ)

))
, for a sequence cc,k = C(γk) for the sequence

of policies γk in Lemma 2.3.8.

Proof. Consider the sequence cc,k = Vk + c(λ). Let us choose a sequence εV
∆
= Vk log

(
1
Vk

)
which decreases to zero as Vk ↓ 0. Let γk ∈ Γa,M be a sequence of εV -optimal policies for

FINITE-µCHOICE such that Q(γk) ≤ Q∗M (cc,k) + εV . Then, applying Corollary 2.3.5 we have that
λ

µu−λ −Q(γk) = O
(

(cc,k − c(λ)) log
(

1
cc,k−c(λ)

))
. Then, as Vk ↓ 0, there exists some constant c1

such that

Q(γk) ≥
λ

µu − λ
− c1

(
(cc,k − c(λ)) log

(
1

cc,k − c(λ)

))
.

Since Q(γk) ≤ Q∗M (cc,k) + εV , we have that

Q∗M (cc,k) + εV ≥
λ

µu − λ
− c1

(
(cc,k − c(λ)) log

(
1

cc,k − c(λ)

))
.

Then we have that

Q∗M (cc,k) ≥
λ

µu − λ
− (c1 + 1)

(
(cc,k − c(λ)) log

(
1

cc,k − c(λ)

))
.

We have that Q∗M (cc,k) ≤ Q(γk), where γk is the sequence of policies constructed in Lemma 2.3.8.

Therefore Q∗M (cc,k) = Q(γ∗k) = λ
µu−λ −Θ

(
(cc,k − c(λ)) log

(
1

cc,k−c(λ)

))
Remark 2.3.10. We note that the asymptotic characterization of Q∗(cc) has been obtained only

for a particular sequence Vk = C(γk) − c(λ), where γk is as in Lemma 2.3.8. The set of average

service cost values that can be achieved depends upon the set of service rates, {0, µ1, . . . , µK},
available for control. For example, if the set of service rates available for control is {0, µu, µK},
then the average service cost always corresponds to the set of values Vk in Proposition 2.3.9. In

fact, the asymptotic Θ characterization of Q∗M (cc) can be obtained for any sequence of cc,k such

that there exists a sequence of non-idling admissible γk such that C(γk)− c(λ) = Θ(cc,k − c(λ)).

Remark 2.3.11. In this thesis, any sequence of admissible policies γk, which achieve the asymptotic

lower bound is called an order-optimal sequence of policies. For example, the sequence of policies

γk in Lemma 2.3.8 is order-optimal.
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For obtaining bounds on the average queue length for FINITE-µCHOICE-2 and FINITE-µCHOICE-

3, we use a result, presented in Appendix 2.A.1, that uses a quadratic Lyapunov function to obtain

bounds on the average queue length.

Lemma 2.3.12. For FINITE-µCHOICE-2, there exists a sequence of non-idling admissible policies

γk, with a sequence Vk ↓ 0 such that Q(γk) = O
(

log
(

1
Vk

))
and C(γk)− c(λ) = Vk.

Proof. Consider a policy γ defined as follows :

µ(0) = 0,

µ(q) = µl, for q ∈ {1, . . . , qkl},

µ(q) = µu, for q ∈ {qkl + 1, . . . }.

where qkl
∆
=

⌈
log( λ

µl

) (1 + λ−µl
λ

1
U

)⌉
, with U > 0. The sequence of policies γk is obtained by

choosing U from a sequence Uk that decreases to zero.

Now we note that for q ∈ {1, . . . , qkl},

π(q) = π(0)

(
λ

µl

)q
,

and for q ∈ {qkl + 1, . . . }

π(q) = π(0)

(
λ

µl

)qkl ( λ

µu

)q−qkl
.

As
∑∞

q=0 π(q) = 1, we have that

π(0)

1 +

qkl∑
q=1

(
λ

µl

)q
+

(
λ

µl

)qkl ∞∑
q=1

(
λ

µu

)q = 1,

π(0)

[
1 +

λ

λ− µl

[(
λ

µl

)qkl
− 1

]
+

(
λ

µl

)qkl λ

µu − λ

]
= 1. (2.24)

We note that qkl ≥ log( λ
µl

) (1 + λ−µl
λ

1
U

)
. Since λ

µl
> 1 we have that

(
λ

µl

)qkl
≥ 1 +

λ− µl
λ

1

U
.
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Substituting the above lower bound, in (2.24), we have that

π(0) ≤ U

U
(

µu
µu−λ

)
+ 1

(
µu−µl
µu−λ

) ,
or, π(0) ≤ U(

µu−µl
µu−λ

) . (2.25)

We note that for γ,C(γ) = π(0).0 + πµ(kl)c(µl) + πµ(ku)c(µu). Also c(µl) = c(λ) + (µl − λ)m

and c(µu) = c(λ) + (µu − λ)m, where m = c(µu)−c(µl)
µu−µl . Then we have that

C(γ) = πµ(kl)(c(λ) + (µl − λ)m) + πµ(ku)(c(λ) + (µu − λ)m),

≤ c(λ) +m(πµ(kl)(µl − λ) + πµ(ku)(µu − λ)).

We note that γ is admissible, therefore, we have that πµ(kl)µl + πµ(ku)µu = λ. Hence,

πµ(kl)(µl − λ) + πµ(ku)(µu − λ) = π(0)λ

Then,

C(γ) ≤ c(λ) +mπ(0)λ (2.26)

From (2.25), we have that

C(γ)− c(λ) = O(U).

Let V
∆
= C(γ)− c(λ), then V = O(U).

From Proposition 2.A.1, with qε = qkl + 1 and ε = µu − λ, we obtain that

Q(γ) ≤ (qkl + 1)µu
µu − λ

+
λ+ rmax
2(µu − λ)

. (2.27)

Now, for the sequence of policies γk with Uk ↓ 0, qkl = O
(

log
(

1
Uk

))
. Hence Q(γk) =

O
(

log
(

1
Uk

))
and, since Vk = O(Uk), Q(γk) = O

(
log
(

1
Vk

))
. So there exists a sequence of

policies γk such that Q(γk) = O
(

log
(

1
Vk

))
and C(γk)− c(λ) = Vk.

Using the asymptotic lower bound on Q(γ) from Corollary 2.3.7, and the asymptotic upper bound

above, and proceeding as for Proposition 2.3.9 (except that εV is a constant ε > 0) we obtain the

following result.

Proposition 2.3.13. For FINITE-µCHOICE-2, we have that the optimal value of the tradeoff

problem Q∗M (cc,k) is Θ
(

log
(

1
cc,k−c(λ)

))
, for a sequence cc,k = Vk+c(λ), where Vk = C(γk)−c(λ)
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for the sequence of policies γk in Lemma 2.3.12.

The following asymptotic upper bound for FINITE-µCHOICE-3, is obtained using a procedure similar

to that for FINITE-µCHOICE-2 in Lemma 2.3.12.

Lemma 2.3.14. For FINITE-µCHOICE-3, there exists a sequence of non-idling admissible policies

γk with a sequence Vk ↓ 0 such that Q(γk) = O
(

1
Vk

)
with C(γk)− c(λ) = Vk.

Proof. Consider a policy γ defined as follows :

µ(0) = 0,

µ(q) = λ, for q ∈ {1, . . . , qλ},

µ(q) = µ′, for q ∈ {qλ + 1, . . . },

where µ′ = min {µk : µk > λ} and qλ is chosen as
⌈

1
U

⌉
, with U > 0. The sequence of policies γk

is obtained by choosing U from a sequence Uk ↓ 0.

We note that for q ∈ {1, . . . , qλ}, as µ(q) = λ, we have that π(q) = π(0). And for q ∈ {qλ+1, . . . },
we have that π(q) = π(0)

(
λ
µ′

)q−qλ
. As

∑∞
q=0 π(q) = 1, we have that

π(0)

(
1 + qλ +

λ

µ′ − λ

)
= 1,

π(0) ≤ U(µ′ − λ)

Uµ′ + µ′ − λ
≤ U. (2.28)

We note that C(γ) = π(0).0 + πµ(λ)c(λ) + πµ(µ′)c(µ′). We have that c(µ′) = c(λ) +m(µ′ − λ)

where m = c(µ′)−c(λ)
µ′−λ . We note that γ is admissible. Therefore, π(0).0 + πµ(λ)λ+ πµ(µ′)µ′ = λ,

or πµ(µ′)(µ′ − λ) = π(0)λ. Thus

C(γ) = πµ(λ)c(λ) + πµ(µ′)(c(λ) +m(µ′ − λ)),

= c(λ) +mλπ(0)− c(λ)π(0),

≤ c(λ) + (mλ− c(λ))U. (2.29)

Using (2.28) we obtain that, for the policy γ, C(γ)− c(λ) = O (U). Let V
∆
= C(γ)− c(λ). Then

V = O(U).

To use Proposition 2.A.1, we set qε = qλ + 1 and ε = µ′ − λ. We obtain that

Q(γ) ≤ (qλ + 1)µ′

µ′ − λ
+
λ+ rmax
2(µ′ − λ)

. (2.30)

For the policy γk, as qλ = O
(

1
Uk

)
, we have that Q(γk) = O

(
1
Uk

)
. Since Vk = O(Uk), we have
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that Q(γk) = O
(

1
Vk

)
. Hence there exists a sequence of non-idling admissible policies γk, with

Q(γk) = O
(

1
Vk

)
and C(γk)− c(λ) = Vk.

Using the asymptotic lower bound on Q(γk) from Corollary 2.3.7, and the asymptotic upper bound

above, and proceeding as in Proposition 2.3.9 (except that εV is a constant ε > 0), we obtain the

following result.

Proposition 2.3.15. For FINITE-µCHOICE-3, we have that the optimal value of the tradeoff

problem Q∗M (cc,k) is Θ
(

1
cc,k−c(λ)

)
, for a sequence cc,k = Vk + c(λ), where Vk = C(γk)− c(λ) for

the sequence of policies γk in Lemma 2.3.14.

2.3.3 Asymptotic characterization of order optimal admissible policies

The above approach that characterizes the asymptotic behaviour of the average queue length, via

an upper bound on the stationary probability distribution of the queue length for admissible policies,

is used throughout this thesis. In this section, we discuss an advantage that this approach has over

methods proposed in [7] or [44]. We illustrate how the above approach can be used to obtain

an asymptotic characterization of any sequence of order-optimal admissible policies γk for which

C(γk) ↓ c(λ). Such an asymptotic characterization may lead to a reduction in the search space for

the ε-optimal admissible policy for (2.4) as cc ≈ c(λ).

We note that an admissible policy is equivalently described by the sequence (q0 = 0, q1, . . . , qK−1, qK =

∞). In this section, we discuss how asymptotic bounds on qk can be obtained for an admissible

policy with C(γ) ≈ c(λ). We consider only FINITE-µCHOICE-2 and FINITE-µCHOICE-3 in this

section, since these are the cases for which the design of policies is more critical (since Q∗(cc)

increases to infinity as cc ↓ c(λ)).

We note that for special classes of admissible policies, such as buffer-partitioning policies proposed

in [7], intuition about qk can be obtained from the asymptotic characterization of Q(γ) for a γ such

that C(γ) ≈ c(λ). We note that buffer partitioning policies use only a specific set of rates, e.g., for

FINITE-µCHOICE-2, only the rates {0, µl, µu} are used. Since µl < λ < µu, intuitively, we expect

that the partition qkl ≈ Q(γ), which implies that qkl = Ω
(

log
(

1
cc−c(λ)

))
for any feasible policy as

cc ↓ c(λ). We note that the above asymptotic behaviour for the partition can be surmised from the

asymptotic behaviour of Q(γ), which may be obtained via methods as in [43] or [44]. However, in

the following, we discuss how bounds on the stationary probability distribution of the queue length

are useful in obtaining a much more refined asymptotic characterization of the policy.
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Two inequalities:

In this section, we discuss two inequalities, which form the basis for the asymptotic character-

ization of any sequence of order-optimal policies. Let q1 ≤ q2. Let Pl
{
q1 ≤ Q ≤ q2

}
and

Pu
{
q1 ≤ Q ≤ q2

}
be any lower bound and upper bound to Pr

{
q1 ≤ Q ≤ q2

}
, i.e., Pl

{
q1 ≤ Q ≤ q2

}
≤

Pr
{
q1 ≤ Q ≤ q2

}
≤ Pu

{
q1 ≤ Q ≤ q2

}
. Also let πl(q) and πu(q) be any lower bound and up-

per bound to π(q), i.e., πl(q) ≤ π(q) ≤ πu(q). The asymptotic characterization of any policy is

obtained using the following two observations. If ql is the largest integer such that

q1+ql∑
q=q1

πu(q) ≤ Pl
{
q1 ≤ Q ≤ q2

}
, (2.31)

then ql ≤ q2 − q1. If qu is the smallest integer such that

q1+qu∑
q=q1

πl(q) ≥ Pu
{
q1 ≤ Q ≤ q2

}
, (2.32)

then ql ≥ q2 − q1. We note that bounds on qk − qk−1 + 1, which is the set of queue lengths for

which the service rate µk is used, can be obtained by using q1 = qk−1 + 1 and q2 = qk.

The bounds - Pl {.}, Pu {.}, πl(.), and πu(.) :

In the following we discuss how Pl {.}, Pu {.}, πl(.), and πu(.) can be obtained. We note that we

consider only cases where q1 = qk′ + 1 and q2 = qk, where k′ < k. Then Pr
{
q1 ≤ Q ≤ q2

}
=

Pr {µk′+1 ≤ µ(Q) ≤ µk} =
∑k

n=k′+1 πµ(n).

Consider any admissible policy γ. Then for any k, we can obtain a lower bound on πµ(k) as the

optimal value of the linear program:

min πµ(k) (2.33)

such that
K∑
k=0

πµ(k) = 1, (2.34)

K∑
k=0

πµ(k)µk = λ, (2.35)

K∑
k=0

πµ(k) (c(µk)− l(µk)) = C(γ)− c(λ). (2.36)

An upper bound on πµ(k) can be obtained by maximising πµ(k) in the above linear program.

However, we note that finding the above bounds analytically is difficult. Hence, in the following we

find other bounds on πµ(k) or
∑k

n=k′+1 πµ(n), which can be expressed analytically. We note that
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these analytical bounds are obtained from the constraints in the above linear program.

We note that for k < kl and k > ku, from Lemma 2.3.2 we have that πµ(k) ≤ C(γ)−c(λ)
c(µk)−l(µk) .

Proceeding as in the proof of Lemma 2.3.2 we can also show that if k < kl or k′ ≥ ku, then

k∑
n=k′+1

πµ(k) ≤ C(γ)− c(λ)

minn∈{k′+1,...,k} (c(µn)− l(µn))
. (2.37)

If kl = ku, as in FINITE-µCHOICE-3, then from (2.34) and (2.36), we have that

πµ(kl) = 1−
∑
k 6=kl

πµ(k) ≥ 1− C(γ)− c(λ)

mink 6=kl (c(µk)− l(µk))
. (2.38)

If kl < ku, as in FINITE-µCHOICE-2, then again from (2.34) and (2.36), we have that

ku∑
k=kl

πµ(k) ≥ 1− C(γ)− c(λ)

mink<kl,k>ku (c(µk)− l(µk))
. (2.39)

Suppose we are interested in
∑k̃

k=kl
πµ(k). Then we have that

k̃∑
k=kl

πµ(k) +

ku∑
k=k̃+1

πµ(k) ≥ 1− C(γ)− c(λ)

mink<kl,k>ku (c(µk)− l(µk))
. (2.40)

If k̃ = ku, then we note that the RHS is a lower bound. If k̃ < ku, then we proceed as follows

k̃∑
k=kl

πµ(k) ≥ 1−
ku∑

k=k̃+1

πµ(k)− C(γ)− c(λ)

mink<kl,k>ku (c(µk)− l(µk))
. (2.41)

From (2.35), we have that

k̃∑
k=kl

πµ(k)µk +

ku∑
k=k̃+1

πµ(k)µk ≤ λ,

µl

k̃∑
k=kl

πµ(k) + µk̃

ku∑
k=k̃+1

πµ(k) ≤ λ,

Or,

ku∑
k=k̃+1

πµ(k) ≤
λ− µl

∑k̃
k=kl

πµ(k)

µk̃
.
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Therefore, we have that

k̃∑
k=kl

πµ(k) ≥ 1−
λ− µl

∑k̃
k=kl

πµ(k)

µk̃
− C(γ)− c(λ)

mink<kl,k>ku (c(µk)− l(µk))
,

k̃∑
k=kl

πµ(k) ≥
µk̃ − λ
µk̃ − µl

− µk̃
C(γ)− c(λ)

mink<kl,k>ku (c(µk)− l(µk))
. (2.42)

We note that this lower bound is non-negative only if µk̃ > λ. We note that

∑
k<kl,k>ku

πµ(k) (c(µk)− l(µk)) = C(γ)− c(λ),

∑
k<kl,k>ku

πµ(k) ≥ C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))
. (2.43)

We note that for FINITE-µCHOICE-2, the best lower bound that can be obtained for
∑

k<kl
πµ(k)

and
∑

k>ku
πµ(k) separately is zero. For example, if we try to obtain a lower bound on

∑
k<kl

πµ(k),

since the constraints (2.34), (2.35), and (2.36) can be met by assigning positive probability to

µk ≥ kl only, we obtain the trivial lower bound that
∑

k<kl
πµ(k) ≥ 0. However, for FINITE-

µCHOICE-3 we have that

∑
k<kl

πµ(k) (µk − λ) +
∑
k>ku

πµ(k) (µk − λ) = 0, from (2.35),

∑
k>ku

πµ(k) (µk − λ) =
∑
k<kl

πµ(k) (λ− µk) . (2.44)

To obtain a lower bound on
∑

k>ku
πµ(k) we proceed as follows. From (2.44)

(µK − λ)
∑
k>ku

πµ(k) ≥ (λ− µkl−1)
∑
k<kl

πµ(k),

µK − λ
λ− µkl−1

∑
k>ku

πµ(k) +
∑
k>ku

πµ(k) ≥ C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))
, from (2.43),

Or, we have that

∑
k>ku

πµ(k) ≥ λ− µkl−1

µK − µkl−1

(
C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))

)
. (2.45)

To obtain a lower bound on
∑

k<kl
πµ(k) we proceed as follows from (2.44)

(µku+1 − λ)
∑
k>ku

πµ(k) ≤ λ
∑
k<kl

πµ(k),

λ

µku+1 − λ
∑
k<kl

πµ(k) +
∑
k<kl

πµ(k) ≥ C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))
, from (2.43),

50



Or, we have that

∑
k<kl

πµ(k) ≥ µku+1 − λ
µku+1

(
C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))

)
. (2.46)

We now consider a method to obtain an upper bound on
∑

kl≤k≤k̃ πµ(k). We note that from (2.34)

we have

∑
k<kl,k>ku

πµ(k) +
∑

kl≤k≤k̃

πµ(k) +
∑

k̃<k≤ku

πµ(k) = 1,

∑
kl≤k≤k̃

πµ(k) +
∑

k̃<k≤ku

πµ(k) ≤ 1− C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))
, from (2.43).

(2.47)

We note that RHS is the upper bound if kl = ku or k̃ = ku. Suppose k̃ < ku, then we proceed as

follows. From (2.35), we have that

∑
k<kl

πµ(k)µk +
∑

kl≤k≤k̃

πµ(k)µk +
∑

k̃<k≤ku

πµ(k)µk +
∑
ku<k

πµ(k)µk = λ,

µkl−1

∑
k<kl

πµ(k) + µk̃

∑
kl≤k≤k̃

πµ(k) + µu
∑

k̃<k≤ku

πµ(k) + µK
∑
ku<k

πµ(k) ≥ λ,

Or we have that

∑
k̃<k≤ku

πµ(k) ≥ λ

µu
−
µk̃
µu

∑
kl≤k≤k̃

πµ(k)− µkl−1

µu

∑
k<kl

πµ(k)− µK
µu

∑
ku<k

πµ(k),

∑
k̃<k≤ku

πµ(k) ≥ λ

µu
−
µk̃
µu

∑
kl≤k≤k̃

πµ(k)− µkl−1

µu

C(γ)− c(λ)

minn<kl (c(µn)− l(µn))
− µK
µu

C(γ)− c(λ)

minn>ku (c(µn)− l(µn))
.

From (2.47) we have that

∑
kl≤k≤k̃

πµ(k) ≤ 1−
∑

k̃<k≤ku

πµ(k)− C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))
,

≤ 1− λ

µu
+
µk̃
µu

∑
kl≤k≤k̃

πµ(k) +
µkl−1

µu

C(γ)− c(λ)

minn<kl (c(µn)− l(µn))
+

µK
µu

C(γ)− c(λ)

minn>ku (c(µn)− l(µn))
− C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))
,
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Or, we have that(
1−

µk̃
µu

) ∑
kl≤k≤k̃

πµ(k) ≤ 1− λ

µu
+
µkl−1

µu

C(γ)− c(λ)

minn<kl (c(µn)− l(µn))
+

µK
µu

C(γ)− c(λ)

minn>ku (c(µn)− l(µn))
− C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))
,

∑
kl≤k≤k̃

πµ(k) ≤ µu − λ
µu − µk̃

+ µkl−1
C(γ)− c(λ)

minn<kl (c(µn)− l(µn))
+ (2.48)

µK
C(γ)− c(λ)

minn>ku (c(µn)− l(µn))
− µu

C(γ)− c(λ)

maxk<kl,k>ku (c(µk)− l(µk))
.

We note that the above bound is less than one, in the limit as C(γ) ↓ c(λ) only if µk̃ < λ.

We note that the above bounds can be used to obtain upper and lower bounds on
∑k̃

k=0 πµ(k)

in many cases. We then obtain the lower and upper bounds Pl {.} and Pu {.} using
∑k̃

k=0 πµ(k).

Now we discuss how πl(q) and πu(q) can be obtained.

We note that if q1 = qk′ + 1 and q2 = qk for k′ < k, then for any q such that q1 ≤ q ≤ q2, we have

that

π(q) ≤ π(qk′)

(
λ

µk′+1

)q−qk′
, or,

π(q) ≤ π(qk)
(µk
λ

)qk−q
.

We can then bound π(qk′) by πµ(k′) or π(qk) by πµ(k), which leads to an upper bound πu(q) for

q1 ≤ q ≤ q2. We note that a similar upper bound on π(q) has been used in the asymptotic analysis

of Q∗(cc) above.

We are only able to obtain asymptotic lower bounds on π(0), for any sequence of non-idling order

optimal admissible policies γk. The asymptotic lower bounds are obtained using the same method as

in the proof of [44, Theorem 2]. We consider the DTMC Qd[m] which is obtained by uniformizing

Q(t) at rate ru, as in Appendix 2.A. Then, we note that the stationary distribution of Qd[m]

is the same as that of Q(t) under the policy γ. We proceed as in [44] by assuming that the

process is stationary at m = 0. Then, from Markov inequality we have that the probability that

Qd[0] ≤
⌈
2Q(γ)

⌉
and there are no arrivals (or up-transitions for Qd[m]) in k successive slots is at

least 1
2

(
1− λ

ru

)k
. Suppose k =

⌈
2Q(γ)

⌉
+ 1. Then we have that the probability that there is no

service (or down-transition for Qd[m]) in k slots is at least 1
2

(
1− λ

ru

)k
. Therefore, we have that

π(0) ≥
(

1− λ
ru

)k
2k . With our choice of k, we have that

π(0) ≥

(
1− λ

ru

)(d2Q(γ)e+1)

2
(⌈

2Q(γ)
⌉

+ 1
) . (2.49)
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We note that for the policy under consideration, for FINITE-µCHOICE-2 Q(γ) = Θ
(
log
(

1
V

))
and

for FINITE-µCHOICE-3 Q(γ) = Θ
(

1
V

)
, as V ↓ 0. Therefore for small enough V , we have that

π(0) ≥

(
1− λ

ru

)(2Q(γ)+2)

4Q(γ)
,

π(0) ≥ πl(0) =


Ω

(
V

log( 1
V )

)
, for FINITE-µCHOICE-2,

Ω

(
V
(

1− λ
ru

) 1
V

)
, for FINITE-µCHOICE-3.

(2.50)

We note that an asymptotic lower bound πl(q) can then be obtained since π(q) ≥ πl(q) =

πl(0)
(

λ
µK

)q
, but this bound is very weak in most cases.

Asymptotic characterization:

In this section, we obtain asymptotic bounds on qk. We note that since we are not able to obtain

analytical forms for Pl {.}, Pu {.}, πl(.), and πu(.) in all cases, we are not able to obtain asymptotic

bounds on qk, ∀k ∈ {1, . . . ,K}. The asymptotic bounds on qk are obtained using the methodology

described in Section 2.3.3.

Proposition 2.3.16. For FINITE-µCHOICE-2, for any sequence of non-idling order-optimal admis-

sible policies γk, with C(γk)− c(λ) = Vk, we have that

qk̃ =


O
(

log
(

log
(

1
Vk

)))
, if 1 ≤ k̃ ≤ kl − 1,

O
(

log
(

1
Vk

))
, if kl ≤ k̃ and µk̃ ≤ λ,

Ω
(

log
(

1
Vk

))
, if k̃ is such that µk̃ > λ.

Proof. Consider any policy γ in the sequence with Vk = V . Consider any k̃ such that 1 ≤ k̃ ≤ kl−1.

From (2.37), we have that

k̃∑
k=0

πµ(k) ≤ V

minn∈{0,...,k̃} (c(µn)− l(µn))

∆
=
V

c1
.

From (2.32), we have that if qk̃,u is the smallest integer such that

qk̃,u∑
q=0

πl(q) ≥
V

c1
,
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then qk̃ ≤ qk̃,u. Substituting πl(q) = πl(0)
(
λ
µk̃

)q
, we have that

πl(0)

qk,u∑
q=0

(
λ

µk̃

)q
≥ V

c1
,

πl(0)

((
λ

µk̃

)qk̃,u+1

− 1

)
≥

λ− µk̃
µk̃

V

c1
.

Or we have that qk̃,u is the smallest integer such that

qk̃,u ≥ log(
λ
µ
k̃

) [1 +
λ− µk̃
µk̃

V

c1πl(0)

]
.

Since πl(0) = Ω

(
V

log( 1
V )

)
from (2.50), we have that qk̃ ≤ qk̃,u = O

(
log
(
log
(

1
V

)))
. We do not

have any asymptotic lower bounds for qk̃, 1 ≤ k̃ ≤ kl − 1.

Let us now consider k̃ such that kl ≤ k̃ and µk̃ < λ. Then from (2.37) and (2.48), we have that

Pr
{

0 ≤ Q ≤ qk̃
}

=

k̃∑
k=0

πµ(k) =

kl−1∑
k=0

πµ(k) +

k̃∑
k=kl

πµ(k),

≤ V

minn∈{0,...,kl−1} (c(µn)− l(µn))
+

µu − λ
µu − µk̃

+ µkl−1
V

minn<kl (c(µn)− l(µn))
+

µK
V

minn>ku (c(µn)− l(µn))
− µu

V

maxk<kl,k>ku (c(µk)− l(µk))
= Pu

{
0 ≤ Q ≤ qk̃

}
.

We also have that ∀q ≤ qk̃, πl(q) = πl(0)
(
λ
µk̃

)q
. Then, from (2.32), if qk̃,u is the smallest integer

such that
qk̃,u∑
q=0

πl(q) ≥
µu − λ
µu − µk̃

+O(V ),

then qk̃ ≤ qk̃,u. Then, we obtain that qk̃,u = O
(
log
(

1
V

))
. Therefore, for k̃ such that kl ≤ k̃ < λ,

qk̃ = O
(
log
(

1
V

))
.

Now consider k̃ such that k̃ ≤ ku and λ < µk̃. From (2.42), we have that

k̃∑
k=kl

πµ(k) ≥
µk̃ − λ
µk̃ − µl

−
µk̃
c1
V,

where c1 = mink<kl,k>ku (c(µk)− l(µk)). Then

k̃∑
k=0

πµ(k) ≥ Pl
{

0 ≤ Q ≤ qk̃
} ∆

=
µk̃ − λ
µk̃ − µl

−
µk̃
c1
V,

54



For 0 ≤ q ≤ qk̃, we have that π(q) ≤ πu(q) = πu(0)
(
λ
µ1

)q
. From (2.31) if qk̃,l is the largest

integer such that
qk̃,l∑
q=0

πu(q) ≤ Pl
{

0 ≤ Q ≤ qk̃
}
,

then qk̃,l ≤ qk̃. Substituting for πu(q) and Pl
{

0 ≤ Q ≤ qk̃
}

, we have that

qk̃,l∑
q=0

πu(0)

(
λ

µ1

)q
≤

µk̃ − λ
µk̃ − µl

−
µk̃
c1
V.

Since πu(0) = O(V ), we have that qk̃,l = Ω
(
log
(

1
V

))
.

Proposition 2.3.17. For FINITE-µCHOICE-3, for any sequence of non-idling order-optimal admis-

sible policies γk, with C(γk)− c(λ) = Vk, we have that

qk̃ =



O
(

1
Vk

)
, if µk̃ < λ,

Ω (1) , if µk̃ = µkl−1,

O

 1

V
(

1− λ
ru

) 1
V

 , if µk̃ = λ,

Ω
(

1
Vk

)
, if µk̃ ≥ λ.

Proof. The methods used in this proof are similar to that used for the proof of Proposition 2.3.16.

We first consider k̃ such that µk̃ < λ. Since

k̃∑
k=0

πµ(k) ≤ V

minn∈{0,...,k̃} (c(µn)− l(µn))

∆
=
V

c1
,

from (2.37) and πl(0) = Ω

(
V
(

1− λ
ru

) 1
V

)
from (2.50), we have that qk̃,u = O

(
1
V

)
. From (2.46),

for k̃ = kl − 1, we have that

∑
0≤k≤kl−1

πµ(k) ≥ µku+1 − λ
µku+1

(
V

c2

)
,

where c2 = maxk<kl,k>ku (c(µk)− l(µk)). Then using πu(q) = πu(0)
(
λ
µ1

)q
, we have that qk̃,l =

Ω(1), so that qk̃ = Ω(1).

Consider k̃ such that µk̃ = λ. We note that πµ(λ) ≤ 1, then πl(q) = πl(0),∀q ≤ qk̃. Then we

obtain that qk̃,u = O

 1

V
(

1− λ
ru

) 1
V

.
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Ex. Identifier λ c(λ) Type Tradeoff plot

E-111 0.25 0.125 FINITE-µCHOICE-1 2.3

E-112 0.50 0.250 FINITE-µCHOICE-3 2.5

E-113 0.75 0.625 FINITE-µCHOICE-2 2.7

Table 2.2: Numerical examples with c(µ) = µ2 for µ ∈ {0, 0.5, 1}.

Ex. Identifier λ c(λ) Type Tradeoff plot

E-121 0.25 0.015625 FINITE-µCHOICE-1 2.4

E-122 0.50 0.031250 FINITE-µCHOICE-3 2.6

E-123 0.75 0.515600 FINITE-µCHOICE-2 2.8

Table 2.3: Numerical examples with c(µ) = µ5 for µ ∈ {0, 0.5, 1}.

Now consider any k̃ such that µk̃ ≥ λ. We have that
∑k̃

k=0 πµ(k) ≥ πµ(λ) ≥ 1 − V
c1

, where

c1 = mink<kl,k>kl {c(µk)− l(µk)}. Since πu(q) = πu(qkl−1 + 1), for all q > qkl−1, we have that

qkl,l = Ω
(

1
V

)
.

2.3.4 Numerical examples

In this section, we consider some numerical examples for FINITE-µCHOICE. In the examples, we

compare the bounds on Q∗(cc) which were obtained above, with the optimal tradeoff curve for

FINITE-µCHOICE, which is obtained by the numerical solution of an MDP, obtained by uniformiza-

tion as in [5]. We now state, the chosen parameters for each numerical example and the quantities

plotted in the corresponding figures. Each numerical example is identified by “E-abc”, where a,b,

and c are numbers. For each numerical example, we choose the set of service rates and the service

cost function c(µ). Then we consider a set of arrival rates, for each of which the bounds and

the optimal tradeoff are plotted. We note that for each value of λ, we obtain a corresponding

minimum average service cost c(λ). All the numerical examples that we consider in this section,

along with their parameters, are given in Tables 2.2, 2.3, 2.4, and 2.5, along with references to their

corresponding plots.

Ex. Identifier λ c(λ) Type Tradeoff plot

E-211 0.10 0.02 FINITE-µCHOICE-1 2.9

E-212 0.20 0.04 FINITE-µCHOICE-3 2.11

E-213 0.25 0.07 FINITE-µCHOICE-2 2.13

E-214 0.70 0.50 FINITE-µCHOICE-2 2.15

Table 2.4: Numerical examples with c(µ) = µ2 for µ ∈ {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.
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Ex. Identifier λ c(λ) Type Tradeoff plot

E-221 0.10 0.00016 FINITE-µCHOICE-1 2.10

E-222 0.20 0.00032 FINITE-µCHOICE-3 2.12

E-223 0.25 0.00280 FINITE-µCHOICE-2 2.14

E-224 0.70 0.20272 FINITE-µCHOICE-2 2.16

Table 2.5: Numerical examples with c(µ) = µ5 for µ ∈ {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.

The Optimal set of points in each plot is obtained by considering a MDP with the single stage cost

given by q + βc(µ), and solving for the optimal infinite horizon average cost policy. The state of

the MDP corresponds to the queue length q, and the set of actions taken at each state q is the set

of service rates. Here β is a positive Lagrange multiplier. The MDP is obtained by uniformization

at rate ru = λ + rmax. The transitions in the uniformized MDP are as follows : a) for q = 0, the

Markov chain moves to q = 1 with probability λ
ru

, and stays in q = 0 with probability 1− λ
ru

, and

b) for q > 0, the Markov chain moves to q + 1 with probability λ
ru

, to q − 1 with probability µ(q)
ru

,

and stays in q with probability 1− λ+µ(q)
ru

. We note that the state space of the MDP is truncated

at a maximum queue length, which is such that the optimal value does not change appreciably with

further increase in this maximum queue length. The Optimal points are obtained by varying β. The

x-coordinate of a point corresponding to a value of β is the difference between the average service

cost, for the β-optimal policy for the MDP, and c(λ) while the y-coordinate is the average queue

length for the β-optimal policy. The Lower bound (Analytical) curve in each plot is: a) (2.11)

for FINITE-µCHOICE-1, b) (2.15) for FINITE-µCHOICE-2, and c) (2.16) for FINITE-µCHOICE-3.

The Upper bound (Analytical) curve in each plot is obtained as follows: a) for FINITE-µCHOICE-1,

we choose the sequence qku to be a sequence of increasing positive integers, and for each qku obtain

the bound on the average queue length from (2.20), and the average service cost from (2.19), b)

for FINITE-µCHOICE-2, we choose the sequence Uk to be a decreasing sequence, and for each Uk

obtain the bound on the average queue length from (2.27) and the average service cost from (2.26),

c) for FINITE-µCHOICE-3, we choose the sequence Uk to be a decreasing sequence, and for each

Uk obtain the bound on the average queue length and the average service cost from (2.30) and

(2.29) respectively. We note that the bounds on the average queue length which are obtained using

the Lyapunov drift method in Proposition 2.A.1 are usually weak (although they give the correct

order behaviour). Therefore, for the sequence of policies which we have considered for Upper bound

(Analytical), we also evaluate the actual average service cost and average queue length, by obtaining

the stationary probability of the queue length for the system with truncated state space. This curve

is denoted as Upper bound in the plots. We note that discrete points are obtained while varying β,

time sharing of the policies corresponding to these points leads to the continuous curves shown in

the figures.

We note that in all the cases that we have considered, both the analytical upper and lower bounds
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Figure 2.3: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.25 and c(µ) = µ2 for µ ∈ {0, 0.5, 1}.
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Figure 2.4: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.25 and c(µ) = µ5 for µ ∈ {0, 0.5, 1}.
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Figure 2.5: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.50 and c(µ) = µ2 for µ ∈ {0, 0.5, 1}.
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Figure 2.6: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.50 and c(µ) = µ5 for µ ∈ {0, 0.5, 1}.
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Figure 2.7: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.75 and c(µ) = µ2 for µ ∈ {0, 0.5, 1}.
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Figure 2.8: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.75 and c(µ) = µ5 for µ ∈ {0, 0.5, 1}.
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Figure 2.9: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.10 and c(µ) = µ2 for µ ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.
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Figure 2.10: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.10 and c(µ) = µ5 for µ ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.
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Figure 2.11: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.20 and c(µ) = µ2 for µ ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.
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Figure 2.12: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.20 and c(µ) = µ5 for µ ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.
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Figure 2.13: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.25 and c(µ) = µ2 for µ ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.
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Figure 2.14: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.25 and c(µ) = µ5 for µ ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.
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Figure 2.15: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.70 and c(µ) = µ2 for µ ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.
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Figure 2.16: Q∗(cc) as a function of V , where cc = c(λ) + V , for λ = 0.70 and c(µ) = µ5 for µ ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}.
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Figure 2.17: The optimal tradeoff curve for the system with Xµ = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}, c(µ) =

µ2,∀µ ∈ S, and λ = 0.39, 0.40, and 0.41. The minimum average service cost rates are c(0.39) =

0.154, c(0.40) = 0.160, and c(0.41) = 0.169

.

are very loose.

The difference in the asymptotic behaviour ofQ∗(cc) for FINITE-µCHOICE-2 and FINITE-µCHOICE-

3 is illustrated by the following example. Consider the following example : we choose the set of

service rates Xµ = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}, and c(µ) = µ2, ∀µ ∈ S. In Figure 2.17 we plot the

tradeoff curve, numerically obtained from a suitably truncated MDP, for λ = 0.39, 0.40 and 0.41.

The minimum average service cost rates corresponding to λ = 0.39, 0.40 and 0.41 are 0.154, 0.160,

and 0.169. We note that the difference between the average service cost and c(λ) increases when

λ is changed from 0.39 to 0.40 and then decreases when λ is increased, since at λ = 0.40, the

average queue length increases at the rate 1
V .

In Figures 2.18 and 2.19 we illustrate the stationary probability mass functions π(q) for optimal

policies for FINITE-µCHOICE-2 and FINITE-µCHOICE-3 respectively.

2.3.5 An Application

In this section we discuss the application of the above asymptotic results to the example considered

in Section 2.1.3. We obtain a sequence of optimal policies for both the M/M/1-PS (I) and the

M/M/1-PS (II) models which trade off the average transmitter power with the average number of

flows. Both of these sequences are obtained by the numerical evaluation of the optimal policy for

a suitably truncated MDP, with single stage cost q + βP (m) and with state transitions as shown

in Figure 2.1, for a sequence of β > 0. The optimal tradeoff for both M/M/1-PS (I) and (II)

models are shown in Figure 2.20. We then obtain via simulation, the average power and average

number of flows for the discrete time system, for the policies obtained from the M/M/1-PS (I)

and M/M/1-PS (II) models, to obtain a possible (sub-optimal) tradeoff curve as shown in Figure
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Figure 2.18: Stationary probability mass functions for optimal policies for the system with Xµ =

{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}, c(µ) = µ2,∀µ ∈ S, and λ = 0.39 (corresponding to FINITE-µCHOICE-2).

The Ω
(
log
(

1
V

))
asymptotic lower bound arises due to the geometrically increasing and decreasing nature of

π(q) as V ↓ 0.
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Figure 2.19: Stationary probability mass functions for optimal policies for the system with Xµ =

{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}, c(µ) = µ2,∀µ ∈ S, and λ = 0.40 (corresponding to FINITE-µCHOICE-3).

The Ω
(

1
V

)
asymptotic lower bound arises due to the constant nature of π(q) as V ↓ 0.
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Figure 2.20: Tradeoff of average number of flows in the downlink scheduler queue with the average transmitter

power for the motivating problem considered in Section 2.1.3, for a flow arrival rate 0.2 flows/sec

2.20. We note that the sequence of policies suggested by both (I) and (II) models have similar

performance. For this example, the tradeoff curve obtained from the simulation of the policies

suggested by the analysis, demonstrates that with a 1W increase in transmitter power, a 36 fold

decrease in latency, i.e., from 3 mins to 5 secs, is possible. We note that P 1(m) ≤ P 2(m) for

m ∈ {1.25, 1.50, 1.75, 2}, i.e., for µ ≥ µl given that λ = 0.2 (we recall that actual service rates are
m
6.4). Then for each of the optimal policies for the M/M/1-PS (I) (or (II)) model, for which the

average number of flows is large, P 1(m(Q)) ≤ P (m(Q)) ≤ P 2(m(Q)) with high probability. Thus,

the tradeoff curves obtained from the M/M/1-PS (I) and (II) models are approximate upper and

lower bounds to tradeoff curve for the discrete time system, especially when the average number

of flows are large. Then the asymptotic analysis in the above sections, leads to asymptotic upper

and lower bounds on the average transmitter power as a function of the average number of flows

for the discrete time system. Let c1(m) and c2(m) be the lower convex envelopes of P 1(m) and

P 2(m) respectively. Since µl = 1.25/6.4 < λ = 0.2 < µu = 1.50/6.4, by considering the sequence

of optimal policies from the M/M/1-PS (II) model, the average transmitter power for the discrete

time system can bounded below by c1(6.4λ) + Ω
(
e−q
)

and bounded above by c2(6.4λ) +O
(
e−q
)
,

for large q, where q is the average number of flows.

2.4 Conclusions

The main purpose of this chapter is the illustration of the techniques involved in: (i) the derivation

of asymptotic bounds on Q∗(cc) and Q∗M (cc) for admissible policies and (ii) asymptotic bounds on

order-optimal admissible policies in the regime <, using a simple queueing model.

For FINITE-µCHOICE, we observe that the constraint on the average service cost leads to a re-

striction on the stationary probability of service rates which in turn restricts the behaviour of the
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stationary probability of the queue length in the asymptotic regime <, where V = cc − c(λ) ↓ 0.

For FINITE-µCHOICE-2 and FINITE-µCHOICE-3, we note that the stationary probability of service

rates less than µl or greater than µu goes to zero as V ↓ 0. Since, state 0 uses a service rate of 0,

the above fact implies that π(0) ↓ 0 as V ↓ 0. Hence, it is intuitive that the average queue length

has to increase. For FINITE-µCHOICE-3, as µl = µu = λ, as V ↓ 0, the stationary probability

that any service rate other than λ is used approaches zero. Then we observe that the stationary

probability π(q) becomes equal and is O(V ) for all q which occur with high probability, as V ↓ 0,

since π(q)λ = π(q+1)µ(q), q ≥ 0 and µ(q) = λ for all q occurring with high probability. The above

constant nature of π(q) leads to the Ω
(

1
V

)
asymptotic lower bound. For FINITE-µCHOICE-2, as

V ↓ 0, service rates µl < λ and µu > λ could be used. Therefore, intuitively, one expects that the

rate at which Q∗(cc) increases is less for FINITE-µCHOICE-2 compared to FINITE-µCHOICE-3.

Furthermore, since π(q)λ = π(q + 1)µ(q), q ≥ 0, we observe that the stationary probability π(q)

has a geometric growth and decay with growth and decay rates at most λ
µl

and at least λ
µu

respec-

tively, for the set of queue lengths occurring with high probability, as V ↓ 0. The above geometric

growth and decay of π(q) leads to the Ω
(
log
(

1
V

))
asymptotic lower bound in Lemma 2.3.6. The

above behaviour of the stationary probability in the different cases motivates us to analyse the

tradeoff problem for the discrete time queue in Chapter 4, by constructing bounds on the stationary

probability of the queue length, which have the same behaviour in the respective cases.

We note that the sequence of policies which achieve the asymptotic order behaviour in Section 2.3.2

for FINITE-µCHOICE-2 and FINITE-µCHOICE-3 are similar to buffer partitioning policies. We note

that the buffer partitions that were used for these sequences of policies scaled as Ω
(
log
(

1
V

))
and

Ω
(

1
V

)
for FINITE-µCHOICE-2 and FINITE-µCHOICE-3 respectively. This scaling of the buffer

partitions was suggested by the asymptotic lower bounds that were derived in Section 2.3.1, and we

shall see that similar ideas can be used in the design of buffer partitioning policies for discrete time

systems. Furthermore, we have also derived asymptotic bounds on any sequence of order-optimal

policies in Section 2.3.3.

We note that FINITE-µCHOICE-1, where the average queue length increases only to a finite value,

even when the average service cost rate is the minimum possible c(λ), has been hitherto unidentified

in the literature. To the best of our knowledge, the asymptotic characterizations of the optimal

tradeoff curve obtained in this chapter, for all the three cases, were previously not known for the

state dependent M/M/1 model.

The development of the asymptotic results in this chapter, partly motivates the definition of ad-

missible policies for the discrete time queueing model in Chapter 4. The non-idling nature of the

optimal policy which has been obtained in Lemma 2.2.5, motivates us to consider whether the

optimal policy for the discrete time queueing model has the same property also. In Chapter 4, we

shall show that in fact it does. The non-idling property of the optimal policy and its relation with

the place-holder bit scheduling policies [45] are discussed in more detail in Chapter 4. We have also
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illustrated the utility of the simple state dependent M/M/1 queueing model in the analytical study

of scheduling schemes for next generation wireless systems using the example in Section 2.1.3.
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Appendix

2.A Uniformization and a bound on the average queue length

Let ru = rmax + ra,max. Consider a discrete time Markov chain (Qd[m]) which is obtained by uni-

formization of (Q(t)) at rate ru. The transition probabilities, pq1,q2 = P (Qd[m+ 1] = q2|Qd[m] =

q1),m ∈ Z+, of the DTMC are as follows :

p0,0 = 1− λ(0)

ru
,

p0,1 =
λ(0)

ru
,

pq,q+1 =
λ(q)

ru
,∀q ≥ 1,

pq,q−1 =
µ(q)

ru
,

pq,q = 1− λ(q) + µ(q)

ru
.

We note that for an admissible policy γ, the stationary distribution π is the same for both the CTMC

Q(t) and the DTMC Qd[m]. Thus EπQd = Q(γ), Eπu(λ(Qd)) = U(γ), and Eπc(µ(Qd)) = C(γ).

The following proposition states an upper bound on Q(γ) for an admissible policy γ subject to an

assumption about the structure of the policy.

Proposition 2.A.1. Assume that the admissible policy γ is such that there exists a qε such that

µ(qε)− λ(qε) ≥ ε, for some ε > 0. Then

Q(γ) ≤ qε(ε+ ra,max)

ε
+
ru
2ε

(2.51)

Proof. Let L(q) = q2. We use L(q) as a Lyapunov function to derive the above upper bound. The

expected Lyapunov drift ∆(q) =

E [L(Qd[m+ 1])− L(Qd[m])|Qd[m] = q] (2.52)

We have that

∆(q) =
−2q

ru
(µ(q)− λ(q)) +

µ(q) + λ(q)

ru
,∀q.
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Note that from the admissibility of γ, ∀q ≥ qε, µ(q)− λ(q) ≥ ε. So for q ≥ qε we have that

∆(q) ≤ −2qε

ru
+
µ(q) + λ(q)

ru
.

For q < qε,

∆(q) =
−2qε

ru
+

2qε

ru
− 2q

ru
(µ(q)− λ(q)) +

µ(q) + λ(q)

ru
. (2.53)

For q < qε, µ(q)− λ(q) < ε. Therefore

∆(q) ≤ −2qε

ru
+

2q

ru
(ε− µ(q) + λ(q)) +

µ(q) + λ(q)

ru
,

≤ −2qε

ru
+

2qε
ru

(ε+ ra,max) + 1.

For all q, we therefore have that

∆(q) ≤ −2qε

ru
+

2qε
ru

(ε+ ra,max) + 1.

Hence from [36, Theorem A.4.3] we have that

Q(γ) = EπQd ≤
qε(ε+ ra,max)

ε
+
ru
2ε
.
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CHAPTER 3

On the tradeoff of average queue length, average service cost, and

average utility for the state dependent M/M/1 queue: Part II

3.1 Introduction

We continue our analysis of the tradeoff problem for the state dependent M/M/1 model in this

chapter. We note that FINITE-µCHOICE was primarily motivated by the wireless network problem

in Section 2.1.3, for which the set of possible service rates was a finite discrete set. In this chapter,

we consider the INTERVAL-µCHOICE and INTERVAL-λµCHOICE problems, which we study with

the objective of understanding the tradeoff problem for the discrete time queueing model. We note

that in this chapter, Xµ and Xλ are chosen to be finite intervals.

The method of analysis for INTERVAL-µCHOICE and INTERVAL-λµCHOICE is similar to that in

Chapter 2. We again obtain bounds on the stationary probability distribution of the queue length

for admissible policies, leading to an asymptotic characterization of the average queue length as

well as order-optimal admissible policies, in the asymptotic regime <. We note that the analysis

for INTERVAL-µCHOICE can be used to obtain the results for FINITE-µCHOICE. However, in

Chapter 4, we will see that some of the steps used in the analysis for INTERVAL-µCHOICE and

INTERVAL-λµCHOICE, which are different from that for FINITE-µCHOICE, are essential in the

analysis of the discrete time models. We recall that the consideration of the stationary probability

distribution of the queue length in the asymptotic regime <, for admissible policies (which are

monotone), as a method for understanding the asymptotic behaviour of the average queue length,

underlies most of the results obtained in this thesis. We note that in this chapter, since we consider

queueing models with arrival rate control as well as other forms of c(µ) (other than the piecewise
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linear form in Chapter 2), we are able to obtain new insights in this direction.

The question arises as to how insights about the asymptotic behaviour of the minimum average

queue length in the regime < for the discrete time model can be obtained from the state dependent

M/M/1 model. It is clear that all the model features for the discrete time model, even with a single

environment state, cannot be captured by the state dependent M/M/1 model. The model features

for the state dependent M/M/1 model are the sets Xµ and Xλ, and the functions c(µ) and u(λ),

with the restriction that µ(q) and λ(q) are deterministic functions of the queue length. For the

discrete time model with a single environment state, we note that in addition to the sets of possible

service batch sizes and possible admitted arrival batch sizes, and the cost and utility functions, we

also have that the service batch size and the amount of arrivals admitted in a slot are randomized

functions of the history of the process, as discussed in Chapter 1.

Suppose we consider only the set of stationary policies for the discrete time model, which choose

the service batch size S (or the amount A of arrivals admitted) as a randomized function of the

current queue length q only, say with probability distribution Ps|q (or distributed as Pa|q,r which is a

function of the current queue length and number of actual arrivals r). Even then, we have to reduce

Ps|q (or Pa|q,r) to a real value, which can then be modelled by µ(q) (or λ(q)). In the following, we

take EPs|qS as the quantity which represents Ps|q. Thus µ(q) is assumed to correspond to EPs|qS
and therefore Xµ is the set of all values that EPs|qS can take. A similar assumption is made for

λ(q).

We note that for the discrete time model, the service cost incurred in a slot is a random variable,

since the batch size S itself is random. At a queue length q, the expected service cost is EPs|qc(S).

Since we have already chosen µ(q) to correspond to EPs|qS, a possibility is to choose c(µ) to

correspond to c(EPs|qS). A similar assumption is made for u(λ). In retrospect, this turns out to

be a good choice of model features for the state dependent M/M/1 model (e.g., we obtain the

asymptotic Berry Gallager lower bound for the M/M/1 model which, with the above choice of

model features, corresponds to the discrete time model in [7] with admissible policies). We can also

then surmise that one of the reasons for the asymptotic behaviour of the stationary queue length

for admissible policies in the regime < for the discrete time model are the behaviours of asymptotic

probability distributions of EPs|qS(Q) and EPa|q,rA(Q,R), in the regime <, since for the M/M/1

model the behaviours of these quantities are significant.

3.1.1 Overview

We present the analysis of INTERVAL-µCHOICE in Section 3.2. The motivating discrete time

problem for INTERVAL-µCHOICE is discussed in the same section. We recall that in defining

INTERVAL-µCHOICE we considered admissible policies for which λ(q) is a constant λ for all

q ∈ Z+. We obtain asymptotic lower and upper bounds on the tradeoff problem in Sections 3.2.1
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and 3.2.2 respectively. Asymptotic bounds on order-optimal policies for INTERVAL-µCHOICE, are

presented in Section 3.2.3. We consider the counterpart INTERVAL-λCHOICE of INTERVAL-

µCHOICE , for which µ(q) is constant over all q ∈ Z+ and λ(q) is the control variable, in Section

3.2.4. The analysis of INTERVAL-λµCHOICE in presented in Section 3.3, along with the motivating

discrete time problem. We present the main conclusions in Section 3.4, where we discuss the main

ideas obtained in the asymptotic analysis of INTERVAL-µCHOICE, INTERVAL-λCHOICE, and

INTERVAL-λµCHOICE, and how these ideas can be applied to the discrete time model in Chapters

4, 5, and 6.

3.2 Analysis of INTERVAL-µCHOICE

We recall that for INTERVAL-µCHOICE we restrict to admissible policies γ such that λ(q) = λ

and µ(q) ∈ [0, rmax], ∀q ∈ Z+. The tradeoff problem for INTERVAL-µCHOICE is

minimize γ∈Γa Q(γ)

such that C(γ) ≤ cc,

whose optimal value is denoted as Q∗(cc). We also note that a tradeoff problem can be defined

where we minimize over the set of policies, which includes finite mixtures of pure policies in Γa. The

optimal value of this problem is denoted as Q∗M (cc). Then, as for the case of FINITE-µCHOICE

(e.g. as in Corollary 2.3.5), asymptotic lower bounds for Q∗(cc) can be used to obtain asymptotic

lower bounds for Q∗M (cc). In fact, the asymptotic lower bounds in the regime < are the same for

Q∗(cc) and Q∗M (cc). Furthermore, the asymptotic upper bounds that we derive for Q∗(cc) are by

definition upper bounds for Q∗M (cc). Hence, in the following, we present the results for Q∗(cc) only.

The study of INTERVAL-µCHOICE is classified into:

INTERVAL-µCHOICE-1 : c(µ) is strictly convex for µ ∈ [0, rmax], and

INTERVAL-µCHOICE-2 : c(µ) is piecewise linear. That is, (a) there exists a minimal partition

of [0, rmax] into intervals {[ai, bi], i ∈ {1, . . . , P}} with a1 = 0, bP = rmax, and bi = ai+1,

and (b) there are linear functions fi such that ∀µ ∈ [ai, bi], fi(µ) = c(µ).

Remark 3.2.1. We first discuss the motivation for INTERVAL-µCHOICE-1. INTERVAL-µCHOICE-

1 corresponds to the tradeoff problem for the following discrete time queueing model. Work arrives

in a batch, of random size, in every slot, into an infinite buffer queue. The state of the queue is the

amount of unfinished work. We note that for the discrete time model, the amount of unfinished

work or the queue state evolves on the set of non-negative real numbers. This is approximated by an

integer-valued queue evolution process in INTERVAL-µCHOICE-1. The amount of work completed

in each slot, or the service batch size, can be chosen as a function (possibly randomized), of the

75



current backlog of unfinished work. The choice of the amount of work completed in each slot as a

function of the current backlog for the discrete time queue, is modelled by the control of the service

rate, µ(q), in INTERVAL-µCHOICE-1. Hence, the service batch size and the average service batch

size (or rate) also takes values in the set of non-negative real numbers. As discussed in Section

3.1 we then assume that µ(q) takes values in an interval, which for technical reasons is assumed

to be finite. We assume that there is no admission control in the discrete time model, therefore

we assume that the arrival rate is λ for every q for INTERVAL-µCHOICE-1. For the discrete time

queue, we assume that there is a service cost associated with the amount of work done in each slot.

This is modelled by the service cost rate function c(.) in INTERVAL-µCHOICE-1. We note that

since the amount of work done in a slot can be any real value, the service cost for the discrete time

model could be a strictly convex function defined on an interval, which provides the motivation for

assuming c(µ) to be strictly convex for INTERVAL-µCHOICE-1. We note that this discrete time

model is similar to the model considered by Berry and Gallager [7], but with a single fade state.

The motivating discrete time queueing model for INTERVAL-µCHOICE-2 is very similar to the

discrete time model discussed above, except that the queue evolution is assumed to be on integers.

But for stationary randomized policies, the average service batch size could still take any real value

in a finite interval, and in light of the discussion in Section 3.1, µ(q) is again assumed to take any

value from a finite interval. In Chapter 4, we shall see that then c(EPs|qS) is piecewise linear, which

is the motivation for the piecewise linear assumption on c(µ) for INTERVAL-µCHOICE-2.

For any admissible policy γ, from Jensen’s inequality, we have that C(γ) ≥ c(λ). We study

INTERVAL-µCHOICE-1 and INTERVAL-µCHOICE-2 in the asymptotic regime < where the service

cost constraint cc approaches c(λ), since it can be shown that c(λ) = infγ∈Γa C(γ).

Similar to FINITE-µCHOICE, since the asymptotic behaviour of Q∗(cc) for INTERVAL-µCHOICE-2

depends on the behaviour of c(µ) in a neighbourhood of µ = λ, we consider the following cases for

INTERVAL-µCHOICE-2:

INTERVAL-µCHOICE-2-1 : λ ∈ (0, b1 = bλ),

INTERVAL-µCHOICE-2-2 : λ ∈ (ai = aλ, bi = bλ) for some i ∈ {2, . . . , P}, and,

INTERVAL-µCHOICE-2-3 : λ = ai = aλ for some i ∈ {2, . . . , P}.

The motivation for classifying INTERVAL-µCHOICE-2 into the three cases is the same as that for

FINITE-µCHOICE. The different cases are illustrated in Figure 3.1. We note that for INTERVAL-

µCHOICE-1, the function c(µ) is strictly convex for every µ ∈ [0, rmax] and therefore it has no

subcases. We note that the analysis of INTERVAL-µCHOICE-2 is similar to that of FINITE-

µCHOICE except that now the set of service rates is not a given finite set. We now present the

asymptotic lower bounds for Q∗(cc) in the regime < for the above cases.
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Figure 3.1: Illustration of the relationship between λ, µl, and µu along with the minimum average cost c(λ)

and the line l(µ) for the four cases of the INTERVAL-µCHOICE problem.

3.2.1 Asymptotic lower bounds

Similar to the definition used for FINITE-µCHOICE, line l(µ) in the case of INTERVAL-µCHOICE is

defined as: (a) The tangent to the c(µ) curve at λ for INTERVAL-µCHOICE-1, (b) the line passing

through (0, 0) and (b1, c(b1)) for INTERVAL-µCHOICE-2-1, (c) the line passing through (aλ, c(aλ))

and (bλ, c(bλ)) for INTERVAL-µCHOICE-2-2, and (d) any line that passes through (λ, c(λ)) with

a slope m, such that dc(µ)
dµ

−
|µ=λ < m < dc(µ)

dµ

+
|µ=λ (the left and right derivatives respectively) for

INTERVAL-µCHOICE-2-3.

We note that like in the case of FINITE-µCHOICE, here we find an asymptotic lower bound on

Q(γ) by (a) obtaining an upper bound on the stationary probability for a certain set of service rates

in terms of C(γ) and c(λ), (b) relating the stationary probability of this set of service rates to the

stationary probability π(q), of a set of queue lengths, and (c) obtaining a lower bound on Q(γ) in

terms of π(q).

We first consider INTERVAL-µCHOICE-1, for which c(µ) is a strictly convex function of µ ∈
[0, rmax]. We make the following assumption regarding c(µ) at µ = λ.

C2 : For INTERVAL-µCHOICE-1, the second derivative of c(µ) is non-zero at µ = λ.

The above assumption has been used in [7]. We note that since c(µ) is strictly convex, the second

derivative of c(µ) is non-zero for all µ ∈ [0, rmax] except for µ in a countable set. We note that

even though µ(q) ∈ [0, rmax], the set {µ(q), q ∈ Z+} is only countable. Let {µ0 = 0, . . . , µk, . . .}
denote the set of service rates that is used by a policy γ.
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Lemma 3.2.2. For INTERVAL-µCHOICE-1, for any sequence of non-idling admissible policies γk

such that C(γk)− c(λ) = Vk ↓ 0 we have that Q(γk) = Ω
(

1√
Vk

)
.

Proof. Consider a particular policy γ in the sequence γk with Vk = V . Let µ∗
∆
= λ − εV , where

εV > 0 is a function of V . The functional form of εV will be chosen later. We have that

V =
∞∑
k=0

(c(µk)− l(µk))πµ(k) =
∞∑
q=0

(c(µ(q))− l(µ(q)))π(q),

=

∞∑
q=0

(
c(λ) +

dc(µ)

dµ

∣∣∣∣
µ=λ

(µ(q)− λ)− l(µ(q)) +G(µ(q)− λ)

)
π(q),

where G(x) is a strictly convex function in x as in [7, Proposition 4.2]. We note that c(λ) +
dc(µ)
dµ |µ=λ(µ(q) − λ) = l(µ(q)). Thus we have that V =

∑∞
q=0G(µ(q) − λ)π(q). As G(x) is

strictly convex in x and µ(q)− λ is bounded, we have from Proposition 3.A.1 that G(µ(q)− λ) ≥
a1(µ(q)− λ)2 for some constant a1 > 0. Thus we have that

V ≥ a1

∞∑
q=0

(µ(q)− λ)2π(q). (3.1)

Define qµ∗ = inf {q : µ(q) ≥ µ∗}. From the non-decreasing property of µ(q) for γ, we have that

Pr {µ(Q) < µ∗} = Pr {Q < qµ∗}. Then,

Pr {µ(Q) < µ∗} =

qµ∗−1∑
q=0

π(q) ≤ V

a1ε2V
, (3.2)

where we have used the upper bound (3.1). We choose εV as a2

√
V , so that α

∆
= 2V

a1ε2V
= 2

a1a2
2

.

We choose a2 such that α < 1. In fact, we note that α can be made arbitrarily close to zero by

the choice of a2. Therefore, Pr {µ(Q) ≥ µ∗} ≥ 1− α
2 , which can be made arbitrarily close to one.

We note that for any q < qµ∗ , π(q) ≤ α
2 . Therefore π(qµ∗) ≤ π(qµ∗ − 1) λµ∗ ≤

λα
2µ∗ . In order to

obtain a lower bound on Q(γ), we intend to find the largest q such that Pr {Q ≤ q} ≤ 1
2 . But we

note that Pr {Q < qµ∗} ≤ V
a1ε2V

= α
2 . Therefore the largest q satisfies

qµ∗−1∑
q=0

π(q) +

q∑
q=qµ∗

π(q) ≤ 1

2

If q1 satisfies

q1∑
q=qµ∗

π(q) ≤ 1

2
− α

2
,
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then q1 ≤ q, for α sufficiently small. As Q(t) is a birth-death process, we have that π(q)λ =

π(q + 1)µ(q + 1). Furthermore, if q ≥ qµ∗ we have that π(q − 1)λ ≥ π(q)µ∗. By induction, we

obtain that for q ∈ {qµ∗ , . . . }

π(q) ≤ π(qµ∗)

(
λ

µ∗

)q−qµ∗
≤ π(qµ∗ − 1)

(
λ

µ∗

)q−qµ∗+1

, (3.3)

and for any q′ ≥ qµ∗ ,
q′∑

q=qµ∗

π(q) ≤ π(qµ∗ − 1)

q′−qµ∗+1∑
m=1

(
λ

µ∗

)m
. (3.4)

Using the above upper bound on
∑q′

q=qµ∗
π(q), we obtain a lower bound q2 to q1. If q2 is the largest

integer such that

π(qµ∗ − 1)

q2−qµ∗+1∑
m=1

(
λ

µ∗

)m
≤ 1

2
− α

2
, (3.5)

then
∑q2

q=0 π(q) ≤ 1
2 and q1 ≥ q2.

Now we obtain an upper bound on π(qµ∗ − 1), which is tighter than the upper bound α
2 derived

before. From (3.1) we have that

V

a1
≥

∞∑
q=0

(µ(q)− λ)2π(q) ≥
∑
q<qµ∗

(µ(q)− λ)2π(q)

=
∑
q<qµ∗

(µ(q)− λ)2π(q) + 0
∑
q≥qµ∗

π(q),

≥

 ∑
q<qµ∗

(µ(q)− λ)π(q)

2

(using Jensen’s inequality as in [7]). (3.6)

But, as π(q)µ(q) = π(q − 1)λ, we obtain that

∑
q<qµ∗

(µ(q)− λ)π(q) = −λπ(0) +
∑

1≤q≤qµ∗−1

(λπ(q − 1)− λπ(q)) = −λπ(qµ∗ − 1),

or
V

a1
≥ λ2π(qµ∗ − 1)2. (3.7)

Now we find a lower bound q3 on q2 by using the above upper bound on π(qµ∗ − 1) in (3.5). Let

q3 be the largest integer such that

1

λ

√
V

a1

q3−qµ∗+1∑
m=1

(
λ

µ∗

)m
≤ 1

2
− α

2
.
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Then q3 ≤ q2. We have that q3 satisfies

1

λ

√
V

a1

q3−qµ∗+1∑
m=1

(
λ

µ∗

)m
≤ 1

2
− α

2
,

(
λ
µ∗

)q3−qµ∗+1
− 1

λ− µ∗
≤
√
a1

V

[
1− α

2

]
,(

λ

µ∗

)q3−qµ∗+1

≤ 1 + (λ− µ∗)
√
a1

V

[
1− α

2

]
q3 − qµ∗ + 1 ≤ log λ

µ∗

[
1 + (λ− µ∗)

√
a1

V

[
1− α

2

]]
.

Since qµ∗ > 0, we note that q3 is at least⌊
log λ

µ∗

[
1 + (λ− µ∗)

√
a1

V

[
1− α

2

]]
− 1

⌋
.

Therefore,

q3 ≥ log 1

1− εV
λ

[
1 + εV

√
a1

V

[
1− α

2

]]
− 2,

=
log
[
1 + εV

√
a1
V

[
1−α

2

]]
− log(1− εV

λ )
− 2.

Since εV = a2

√
V , we have

q3 ≥
log
[
1 + a2

√
a1

[
1−α

2

]]
− log

(
1− a2

√
V

λ

) − 2.

Since Q(γ) ≥ q
2 ≥

q1
2 ≥

q2
2 ≥

q3
2 we have that

Q(γ) ≥ 1

2

 log
[
1 + a2

√
a1

[
1−α

2

]]
− log

(
1− a2

√
V

λ

) − 2

 .
As V ↓ 0, we note that log

(
1− a2

√
V

λ

)
= Θ

(√
V
)

. Hence, for the sequence γk with C(γk) −

c(λ) = Vk ↓ 0, we have that Q(γk) = Ω
(

1√
Vk

)
.

Remark 3.2.3. We note that as V ↓ 0, π(0) → 0. We also note that as V ↓ 0, there exists a set

of queue lengths, Qh, occurring with high probability (1 − V ), such that µ(q) → λ,∀q ∈ Qh. If

π(0)→ 0, then |Qh| → ∞. Furthermore, for each q ∈ Qh, π(q) = O(
√
V ). We also note that the

stationary probability for each q ∈ Qh become equal as V ↓ 0. Then the average queue length is

Ω
(

1√
V

)
.

Remark 3.2.4. We note that the lower bounding technique in [7] can be used to obtain the Ω
(

1√
V

)
80



lower bound by considering a uniformized version of Q(t). We outline this method in Appendix 3.B.

Using the stationary probability of the queue length has its advantages, since it gives us additional

insights into the form of the optimal policy.

Lemma 3.2.5. For INTERVAL-µCHOICE-2-1, for any sequence of non-idling admissible policies

γk with C(γk)− c(λ) = Vk ↓ 0 we have that Q(γk) = λ
bλ−λ −O

(
V 1−δ log

(
1
V

))
, for 0 < δ < 1.

We note that INTERVAL-µCHOICE-2-1 is very similar to FINITE-µCHOICE-1 for which we recall

that the asymptotic order was O
(
V log

(
1
V

))
. However, for INTERVAL-µCHOICE-2-1, we are only

able to show that the order is O
(
V 1−δ log

(
1
V

))
, where δ can be made arbitrarily close to zero.

Proof. We note that in this case there exists a policy γ, for which µ(q) = b1 = bλ,∀q > 0, with

C(γ) = c(λ) and Q(γ) = λ
bλ−λ . For V = 0, we note that the above policy is optimal. The solution

to the tradeoff problem is similar to FINITE-µCHOICE-1 in which the average queue length increases

but only to a finite limit as Vk ↓ 0. Consider a particular policy γ in the sequence γk with Vk = V .

We have that

V =

∞∑
k=0

(c(µk)− l(µk))πµ(k) =
∑
µk>bλ

(c(µk)− l(µk))πµ(k).

Let µ∗ = bλ + εV , where εV is a function of V to be chosen later. Then we have that

V ≥
∑
µk≥µ∗

(c(µk)− l(µk))πµ(k)

≥ ma

∑
µk≥µ∗

(µk − bλ)πµ(k)

≥ maεV
∑
µk≥µ∗

πµ(k)

V

maεV
≥

∑
µk≥µ∗

πµ(k), (3.8)

where ma is the tangent of the angle made by the line passing through (bλ, c(bλ)) and (b2, c(b2))

with the line l(µ). We proceed as in the proof of the asymptotic lower bound for problem FINITE-

µCHOICE-1. But unlike in FINITE-µCHOICE-1, we note here that any service rate arbitrarily close

to bλ might be used by a policy γ. Intuitively, since
∑

µk≥µ∗ πµ(k) should approach 0 as V ↓ 0, we

require that the choice of εV should be such that V
εV
↓ 0 as V ↓ 0.

Let qµ∗ = inf {q : µ(q) ≥ µ∗}. For q < qµ∗ , µ(q) < µ∗ and therefore π(q)λ < π(q + 1)µ∗. Hence,

by induction we obtain that

π(qµ∗ −m) < π(qµ∗)

(
µ∗

λ

)m
, for m ∈ {1, . . . , qµ∗}. (3.9)
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From (3.8), we have

∑
q<qµ∗

π(q) = 1−
∑
q≥qµ∗

π(q) ≥ 1− V

maεV
.

Now from (3.9) we have

∑
q<qµ∗

π(q) ≤
qµ∗−1∑
q=0

π(qµ∗)

(
µ∗

λ

)qµ∗−q
, hence we have that,

1− V

maεV
≤ π(qµ∗)

qµ∗∑
m=1

(
µ∗

λ

)m
,

1

π(qµ∗)

(
1− V

maεV

)
≤

qµ∗∑
m=1

(
µ∗

λ

)m
=

µ∗

µ∗ − λ

[(
µ∗

λ

)qµ∗
− 1

]
.

We note that as π(qµ∗) ≤
∑

q≥qµ∗ π(q) ≤ V
maεV

, we have that 1
π(qµ∗ ) ≥

maεV
V and therefore

maεV
V

(
1− V

maεV

)
≤ µ∗

µ∗ − λ

[(
µ∗

λ

)qµ∗
− 1

]
,

log µ∗
λ

[
µ∗ − λ
µ∗

maεV
V

(
1− V

maεV

)
+ 1

]
≤ qµ∗ .

By definition, for every q < qµ∗ , µ(q) < µ∗, and for every q ≥ qµ∗ , µ(q) ≤ rmax. Let us define

qµ∗,l =

⌈
log µ∗

λ

[
µ∗ − λ
µ∗

maεV
V

(
1− V

maεV

)
+ 1

]⌉
,

which is the smallest possible value for qµ∗ for any policy γ. Consider another policy γ′ defined as

follows :

µ(0) = 0,

µ(q) = µ∗, for 1 ≤ q ≤ qµ∗,l,

µ(q) = rmax, for q > qµ∗,l.

Then Q(γ′) ≤ Q(γ). We now obtain a lower bound on Q(γ′) as in FINITE-µCHOICE-1.

Recall that for γ′ we have (using the sequence of steps leading to (2.10))

Q(γ′) ≥ (1− a)

[
a

(1− a)2
{1− (1− a)(qµ∗,l + 1)aqµ∗,l − a.aqµ∗,l}+ aqµ∗,l

{
qµ∗,l

b

1− b
+

b

(1− b)2

}]
,

=
a

1− a
+ (1− a)

[
aqµ∗,l

{
qµ∗,l

b

1− b
+

b

(1− b)2

}
− a

(1− a)2
{(1− a)(qµ∗,l + 1)aqµ∗,l + a.aqµ∗,l}

]
,

≥ a

1− a
− a

1− a
aqµ∗,l [1 + (1− a)qµ∗,l] ,
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where a = λ
µ∗ and b = λ

rmax
. We note that for V ↓ 0, the term a

1−a = λ
bλ−λ

(
1− εV

bλ−λ + o(εV )
)

.

If V ↓ 0, since we require that V
εV
↓ 0, qµ∗,l ↑ ∞ and therefore the second term in the lower

bound for Q(γ′) is aqµ∗,la
qµ∗,l . We note that at V = 0, since we require that the lower bound

is tight, we only consider εV such that εV ↓ 0 as V ↓ 0. Then it can be shown that Q(γ) ≥
Q(γ′) = λ

bλ−λ −O
(
εV + V

εV
log
(
εV
V

))
, for any sequence εV ↓ 0 and V

εV
↓ 0 as V ↓ 0. By choosing

εV = V 1−δ, where 0 < δ < 1, we obtain that

Q(γ) =
λ

bλ − λ
−O

(
V 1−δ log

(
1

V

))
.

For the sequence γk, we therefore obtain that Q(γk) = λ
bλ−λ −O

(
V 1−δ log

(
1
V

))
.

Lemma 3.2.6. For INTERVAL-µCHOICE-2-2, for any sequence of non-idling admissible policies

γk with C(γk)− c(λ) = Vk ↓ 0, we have that Q(γk) = Ω
(

log
(

1
Vk

))
.

Proof. Consider a particular policy γ in the sequence γk with Vk = V . Let µ∗
∆
= aλ− εV . We have

that

V =
∑
µk<aλ

(c(µk)− l(µk))πµ(k) +
∑
µk>bλ

(c(µk)− l(µk))πµ(k),

≥
∑

µk<aλ−εV

(c(µk)− l(µk))πµ(k),

= ma

∑
µk<aλ−εV

(aλ − µk)πµ(k),

≥ maεV Pr {µ(Q) < µ∗} ,

where ma is the tangent of the angle made by the line passing through (ai = aλ, c(ai)) and

(ai−1, c(ai−1)) with the line l(µ). Define qµ∗ = inf {q : µ(q) ≥ µ∗}. As γ is admissible, we have

that Pr {µ(Q) < µ∗} = Pr {Q < qµ∗}. Hence we have

Pr {Q < qµ∗} ≤
V

maεV
,

and π(qµ∗ − 1) ≤ V

maεV
.

We now choose εV = ε, a positive constant. To find a lower bound on Q(γ), in the following, we

intend to find the largest q such that
∑q

q=0 π(q) ≤ 1
2 . But we note that Pr {Q < qµ∗} ≤ V

maε
and

for any q < qµ∗ , π(q) ≤ V
maε

. Therefore, π(qµ∗) ≤ π(qµ∗ − 1) λµ∗ ≤
λV

maεµ∗
. Let q1 be the largest

integer such that

q∑
q=qµ∗

π(q) ≤ 1

2
− V

maε
,

83



then q1 ≤ q. Proceeding as for problem INTERVAL-µCHOICE-1, we obtain a lower bound q2 on

q1 by using an upper bound for π(q). We note that if q ≥ qµ∗ we have that π(q − 1)λ ≥ π(q)µ∗.

By induction, we obtain that for q ∈ {qµ∗ , . . . }

π(q) ≤ π(qµ∗ − 1)

(
λ

µ∗

)q−qµ∗+1

,

and for any q′ ≥ qµ∗ ,
q′∑

q=qµ∗

π(q) ≤ π(qµ∗ − 1)

q′−qµ∗+1∑
m=1

(
λ

µ∗

)m
.

Using the above upper bound on
∑q′

q=qµ∗
π(q), and π(qµ∗ − 1) ≤ V

maε
, we obtain the following

lower bound q2 to q1.

If q2 is the largest integer such that

V

maε

q2−qµ∗+1∑
m=1

(
λ

µ∗

)m
≤ 1

2
− V

maε
,

then
∑q2

q=0 π(q) ≤ 1
2 and q2 ≤ q1. Hence, q2 is the largest integer such that

(
λ

aλ − ε

)q2−qµ∗+1

≤ 1 +

(
λ− aλ + ε

λ

)
εma

V

(
1

2
− V

maε

)
q2 ≤ qµ∗ − 1 + log λ

aλ−ε

[
1 +

(
λ− aλ + ε

λ

)
εma

V

(
1

2
− V

maε

)]
.

Since qµ∗ ≥ 0, q2 is at least⌊
log λ

aλ−ε

[
1 +

(
λ− aλ + ε

λ

)
εma

V

(
1

2
− V

maε

)]
− 1

⌋
.

Therefore,

Q(γ) ≥ q

2
≥ q1

2
≥ q2

2
≥ 1

2

[
log λ

aλ−ε

[
1 +

(
λ− aλ + ε

λ

)
εma

V

(
1

2
− V

maε

)]
− 2

]
.

Hence, for any sequence γk with C(γk)−c(λ) = Vk ↓ 0, we obtain that Q(γk) = Ω
(

log
(

1
Vk

))
.

Remark 3.2.7. We note that as V ↓ 0, π(0) ↓ 0. We also note that as V ↓ 0, there exists a set

of queue lengths, Qh, occurring with high probability (1− V ), such that µ(q) ∈ [aλ, bλ],∀q ∈ Qh.

If π(0) → 0, then |Qh| → ∞. We note that for q 6∈ Qh, π(q) = O(V ). Then from the birth

death structure of Q(t) we obtain that the smallest queue length qmin ∈ Qh has π(qmin) = O(V ).

Since for q ∈ Qh, µ(q) ∈ [aλ, bλ] and the policies that we consider are monotone, the stationary

probability distribution of the queue lengths in Qh can be observed to be geometrically increasing

and then decreasing, which leads to the log
(

1
V

)
growth for the average queue length.
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Remark 3.2.8. We note that the lower bounding technique in [44] can be used to obtain the

Ω
(
log
(

1
V

))
lower bound by considering a uniformized version of Q(t) as we discussed in Remark

3.2.4. We again note that obtaining the stationary probability of the queue length, as in the above

proof has its advantages, since it gives us additional insights into the form of the optimal policy.

Lemma 3.2.9. For INTERVAL-µCHOICE-2-3, for any sequence of non-idling admissible policies

γk with C(γk)− c(λ) = Vk ↓ 0, we have that Q(γk) = Ω
(

1
Vk

)
.

Proof. Consider a policy γ in the sequence γk, with Vk = V . Let µ∗
∆
= λ − εV = aλ − εV . Since

c(µk) ≥ l(µk), we have

V ≥
∑
µk<λ

(c(µk)− l(µk))πµ(k) ≥
∑
µk<µ∗

(c(µk)− l(µk))πµ(k)

≥
∑
µk<µ∗

ma(λ− µk)πµ(k) ≥ maεV Pr {µ(Q) < µ∗} ,

where ma is the tangent of the angle made by the line passing through (ai = aλ, c(ai)) and

(ai−1, c(ai−1)) with the line l(µ). Let εV
∆
= a2V , where a2 is chosen so that α

∆
= 2V

maεV
< 1. We

note that a2 can be chosen such that α is arbitrarily close to zero. Define qµ∗ = inf {q : µ(q) ≥ µ∗}.
Since γ is admissible, we have that Pr {Q < qµ∗} = Pr {µ(Q) < µ∗} ≤ V

maεV
. We have

Pr {Q < qµ∗} ≤
α

2
,

and π(qµ∗ − 1) ≤ α

2
.

To find a lower bound on Q(γ), in the following, we intend to find the largest q, such that∑q
q=0 π(q) ≤ 1

2 . But we note that Pr {Q < qµ∗} ≤ α
2 and for any q < qµ∗ , π(q) ≤ α

2 . Therefore,

π(qµ∗) ≤ π(qµ∗ − 1) λµ∗ ≤
λα
2µ∗ . If q1 is the largest integer such that

q∑
q=qµ∗

π(q) ≤ 1

2
− V

maεV
,

then q1 ≤ q. Proceeding as for problem INTERVAL-µCHOICE-1, we obtain a lower bound q2 on

q1 by using an upper bound for π(q). We note that if q ≥ qµ∗ we have that π(q − 1)λ ≥ π(q)µ∗.

By induction, we obtain that for q ∈ {qµ∗ , . . . }

π(q) ≤ π(qµ∗ − 1)

(
λ

µ∗

)q−qµ∗+1

,

and for any q′ ≥ qµ∗ ,
q′∑

q=qµ∗

π(q) ≤ π(qµ∗ − 1)

q′−qµ∗+1∑
m=1

(
λ

µ∗

)m
.

Using the above upper bound on
∑q′

q=qµ∗
π(q) we obtain the following lower bound q2 to q1. If q2
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is the largest integer such that

π(qµ∗ − 1)

q2−qµ∗+1∑
m=1

(
λ

µ∗

)m
≤ 1− α

2
,

then q2 ≤ q.

We note that

V ≥
∑
µk<µ∗

ma(λ− µk)πµ(k),

=
∑
q<qµ∗

ma(λ− µ(q))π(q).

Again, since π(q)µ(q) = π(q − 1)λ, it follows that

V ≥ maλπ(qµ∗ − 1).

Now if q3 is the largest integer such that

V

maλ

q3−qµ∗+1∑
m=1

(
λ

µ∗

)m
≤ 1− α

2
,

then q3 ≤ q2. We have that q3 satisfies

q3 ≤ qµ∗ − 1 + log λ
µ∗

[
1 +

εV
λ

maλ

V

1− α
2

]
,

q3 ≤ qµ∗ − 1 +
log
[
1 + εV

λ
maλ
V

1−α
2

]
− log

(
1− εV

λ

) .

Since qµ∗ ≥ 0, and εV = a2V , we have that q3 is at least⌊
log
[
1 +maa2

1−α
2

]
− log

(
1− a2V

λ

) − 1

⌋
.

So that

Q(γ) ≥ q

2
≥ q1

2
≥ q2

2
≥ q3

2
≥ 1

2

[
log
[
1 +maa2

1−α
2

]
− log

(
1− a2V

λ

) − 2

]
.

Since log
(
1− a2V

λ

)
= Θ (V ) as V ↓ 0, we have that for any sequence γk with C(γk) − c(λ) =

Vk ↓ 0, Q(γk) = Ω
(

1
Vk

)
.

Remark 3.2.10. We note that as V ↓ 0, π(0) → 0. We also note that as V ↓ 0, there exists a

set of queue lengths, Qh, occurring with high probability (1 − V ), such that µ(q) → λ, ∀q ∈ Qh.
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If π(0) → 0, then |Qh| → ∞. Furthermore, for each q ∈ Qh, π(q) = O(V ), rather than O(
√
V )

as in Remark 3.2.3. We also note that the stationary probability for each q ∈ Qh become equal as

V ↓ 0. Then the average queue length is Ω
(

1
V

)
. We note that the difference from the behaviour

in Remark 3.2.3 arises since c(µ) is piecewise linear rather than being strictly convex.

3.2.2 Asymptotic behaviour of the tradeoff curve

In this section, we obtain asymptotic upper bounds for the cases INTERVAL-µCHOICE-1, INTERVAL-

µCHOICE-2-1, INTERVAL-µCHOICE-2-2, and INTERVAL-µCHOICE-2-3. With the asymptotic

lower bounds which were derived in the previous section, these bounds provide an almost complete

order characterization of the tradeoff curve Q∗(cc).

Lemma 3.2.11. For INTERVAL-µCHOICE-1, there exists a sequence of admissible policies γk with

a sequence Vk ↓ 0, such that Q(γk) = O
(

1√
Vk

log
(

1
Vk

))
and C(γk)− c(λ) = Vk.

Proof. We evaluate the average queue length Q(γ) and average service cost C(γ) for a policy γ

defined as follows :

µ(0) = 0,

µ(q) = λ− εU , for q ∈ {1, . . . , q1},

µ(q) = λ+ ε′U , for q ∈ {q1 + 1, . . . , 2q1},

µ(q) = λ+K, for q ∈ {2q1 + 1, . . .} .

Let εU =
√
U , ε′U = λεU

λ−εU , and K be some positive constant such that λ + K ≤ rmax. We also

let q1
∆
=

⌊
log( λ

λ−εU

) (1 + εU
Uλ

)⌋
. The sequence of policies γk is obtained by choosing U from a

sequence Uk ↓ 0.

For γ, we have

π(q) =


π(0)

(
λ

λ−εU

)q
for q ∈ {1, . . . , q1} ,

π(0)
(

λ
λ−εU

)q1 (
λ

λ+ε′U

)q−q1
for q ∈ {q1 + 1, . . . , 2q1} ,

π(0)
(

λ
λ−εU

)q1 (
λ

λ+ε′U

)q1 (
λ

λ+K

)q−2q1
= π(0)

(
λ

λ+K

)q−2q1
for q ∈ {2q1 + 1, . . .} .
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Now, since
∑∞

q=0 π(q) = 1 we have that

π(0)

1 +

q1∑
q=1

(
λ

λ− εU

)q
+

(
λ

λ− εU

)q1 q1∑
q=1

(
λ

λ+ ε′U

)q
+
∞∑
q=1

(
λ

λ+K

)q = 1,

π(0)

[
1 +

λ

εU

((
λ

λ− εU

)q1
− 1

)
+

(
λ

λ− εU

)q1 λ

ε′U

(
1−

(
λ

λ+ ε′U

)q1)
+
λ

K

]
= 1,

π(0)

[
1 +

λ

εU

((
λ

λ− εU

)q1
− 1

)
+

(
λ

λ− εU

)q1 λ

ε′U
− λ

ε′U
+
λ

K

]
= 1.

From the above expression, using the lower bound log( λ
λ−εU

) (1 + εU
Uλ

)
− 1 on q1, we have that

π(0) ≤ 1

1 + λ
εU

((
λ−εU
λ

) (
1 + εU

Uλ

)
− 1
)

+ λ−εU
λ

λ
ε′U

(
1 + εU

Uλ

)
− λ

ε′U
+ λ

K

,

=
ε′UUλ

(ε′U + ε)(λ(1− U)− εU ) + Uλε′U (1 + λ
K )

,

= O(U) (3.10)

We now evaluate C(γ). We have that

C(γ) = π(0).0 + πµ(λ− εU )c(λ− εU ) + πµ(λ+ ε′U )c(λ+ ε′U ) + πµ(λ+K)c(λ+K),

= πµ(λ− εU )

(
c(λ)− εU

dc(λ)

dµ
+O(ε2U )

)
+ πµ(λ+ ε′U )

(
c(λ) + ε′U

dc(λ)

dµ
+O((ε′U )2)

)
+πµ(λ+K)

(
c(λ) +K

dc(λ)

dµ
+G(K)

)
,

where dc(λ)
dµ

∆
= dc(µ)

dµ |µ=λ, and G(K) = c(λ + K) − c(λ) − K dc(λ)
dµ . Combining the c(λ) terms,

bounding πµ(λ − εU ) + πµ(λ + ε′U ) + πµ(λ + K) above by 1 and using εU = ε′U = O(
√
U), we

obtain that

C(γ) ≤ c(λ) +O(U) + (−εUπµ(λ− εU ) + ε′Uπµ(λ+ ε′U ) +Kπµ(λ+K))
dc(λ)

dµ
+G(K)πµ(λ+K).

In the following, we show that Q(γ) <∞ and therefore γ is admissible. Then, since

πµ(λ− εU )(λ− εU ) + πµ(λ+ ε′U )(λ+ ε′U ) + πµ(λ+K)(λ+K) = λ, therefore

πµ(λ− εU )(−εU ) + πµ(λ+ ε′U )(ε′U ) + πµ(λ+K)(K) = π(0)λ.

Now from (3.10) we have that π(0) = O(U). Furthermore, πµ(λ + K) = π(0) λK = O(U).

Therefore

C(γ) ≤ c(λ) +O(U) +
dc(λ)

dµ
O(U) +G(K)O(U).
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For V
∆
= C(γ)− c(λ), V = O(U).

In order to obtain an upper bound on Q(γ), we use Proposition 2.A.1 with qε = 2q1 +1 and ε = K,

to obtain that

Q(γ) ≤ (2q1 + 1)(K + λ)

K
+
λ+ rmax

2K
,

Q(γ) = O (q1) = O
(

1√
U

log

(
1

U

))
.

Hence γ is admissible.

Corresponding to the sequence Uk, we have a sequence Vk = O(Uk). Therefore, we have a

sequence of policies γk with Q(γk) = O
(

1√
Uk

log
(

1
Uk

))
. Then Q(γk) = O

(
1√
Vk

log
(

1
Vk

))
and

C(γ)− c(λ) = Vk.

We note that the asymptotic upper bound above for the sequence γk does not match the asymptotic

lower bound Ω
(

1√
Vk

)
, which was derived in Lemma 3.2.2.

Lemma 3.2.12. For INTERVAL-µCHOICE-2-1, there exists a sequence of admissible policies γk,

with a sequence of Vk ↓ 0, such that λ
bλ−λ −Q(γk) = Θ

(
Vk log

(
1
Vk

))
and C(γk)− c(λ) = Vk.

Proof. Consider the policy γ defined as follows :

µ(0) = 0,

µ(q) = bλ, for q ∈ {1, . . . , qbλ},

µ(q) = rmax, for q ∈ {qbλ + 1, . . . }.

The sequence γk is obtained by choosing qbλ = k ∈ Z+. The rest of the proof is similar to the

proof of Lemma 2.3.8.

Remark 3.2.13. We note that the above asymptotic upper bound does not match the asymptotic

lower bound in Lemma 3.2.5. Since µ(q) ∈ [0, rmax], one expects that perhaps another sequence

of policies for which µ(q) = bλ + εV , for q ∈ {1, . . . , qbλ} and where εV is a sequence decreasing to

zero, achieves a better asymptotic upper bound. We have found out that this is not the case, and

the asymptotic upper bound is the same as the one above.

Lemma 3.2.14. For INTERVAL-µCHOICE-2-2, there exists a sequence of admissible policies γk,

with a sequence Vk ↓ 0, such that Q(γk) = O
(

log
(

1
Vk

))
and C(γk)− c(λ) = Vk.
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Proof. Consider a policy γ defined as follows :

µ(0) = 0,

µ(q) = aλ, for q ∈ {1, . . . , q1},

µ(q) = bλ, for q ∈ {q1 + 1, . . . },

where q1
∆
=

⌈
log( λ

aλ

) (1 + λ−aλ
λ

1
U

)⌉
, with U > 0. The sequence γk is obtained by choosing U

from a sequence Uk ↓ 0. The rest of the proof is similar to the proof of Lemma 2.3.12. Since

Vk = O (Uk), we obtain Q(γk) = O
(

log
(

1
Vk

))
.

Using the asymptotic lower bound on Q(γk) from Lemma 3.2.6, and the asymptotic upper bound

above, and proceeding as in the proof of Proposition 2.3.9, we obtain the following result.

Proposition 3.2.15. For INTERVAL-µCHOICE-2-2, we have that the optimal tradeoff curveQ∗(cc,k)

is Θ
(

log
(

1
cc,k−c(λ)

))
, for a sequence cc,k = C(γk), where γk is the sequence of policies in Lemma

3.2.14.

Lemma 3.2.16. For INTERVAL-µCHOICE-2-3, there exists a sequence of admissible policies γk,

with a sequence Vk ↓ 0, such that Q(γk) = O
(

1
Vk

)
and C(γ)− c(λ) = Vk.

Proof. Consider a policy γ defined as follows :

µ(0) = 0,

µ(q) = λ, for q ∈ {1, . . . , q1} ,

µ(q) = λ+K, for q ∈ {q1 + 1, . . .} .

We note that λ = ai, for some i > 1. Here K is a constant such that λ + K ≤ ai+1. We

define q1 =
⌈

1
U

⌉
, with U > 0. The sequence γk is obtained by choosing U from a sequence

Uk ↓ 0. The rest of the proof is similar to that of Lemma 2.3.14. Since Vk = O (Uk), we obtain

Q(γk) = O
(

1
Vk

)
.

Using the asymptotic lower bound on Q(γk) from Lemma 3.2.9, and the asymptotic upper bound

above, and proceeding as in the proof of Proposition 2.3.9, we obtain the following result

Proposition 3.2.17. For INTERVAL-µCHOICE-2-3, we have that the optimal tradeoff curveQ∗(cc,k)

is Θ
(

1
cc,k−c(λ)

)
, for a sequence cc,k = C(γk), where γk is the sequence of policies in Lemma 3.2.16.

90



3.2.3 Asymptotic characterization of order-optimal admissible policies

As in Chapter 2, it is possible to obtain an asymptotic characterization of any sequence of order-

optimal admissible policies using the bounds Pl {.} , Pu {.} , πl(.), and πu(.) and the inequalities

(2.31) and (2.32). We only consider the cases where the minimum average queue length in-

creases to infinity in the asymptotic regime <. The characterization of order-optimal policies for

INTERVAL-µCHOICE-2-2 and INTERVAL-µCHOICE-2-3 can be obtained using similar methods as

FINITE-µCHOICE-2 and FINITE-µCHOICE-3. Therefore, in this section we discuss the asymptotic

characterization of the optimal policy for INTERVAL-µCHOICE-1 only. We first obtain Pl {A} and

Pu {A}, where A ⊆ [0, rmax] is a set of service rates.

Let 0 ≤ δ ≤ 1 and a2 > 0. Let A ⊆ [0, λ − a2V
1−δ

2 ]
⋃

[λ + a2V
1−δ

2 , rmax]. From (3.1), we have

that

Pr {µ(Q) ∈ A} ≤ Pu {A}
∆
=

V δ

a1a2
, (3.11)

if δ > 0. Suppose δ = 0, then for a2 >
1
a1

, we have that

Pr {µ(Q) ∈ A} ≤ Pu {A}
∆
=

1

a1a2
. (3.12)

We then note that Pl {Ac}
∆
= 1− V δ

a1a2
if δ > 0 and Pl {Ac}

∆
= 1− 1

a1a2
if δ = 0 and a2 >

1
a1

.

The upper bound πu(q) that we use in the following is obtained as in (3.4). We now proceed as

in Chapter 2 to obtain a lower bound πl(0) on π(0). From Lemma 3.2.11, we have that for any

sequence of non-idling order-optimal policies γk, Q(γk) = O
(

1√
Vk

log
(

1
Vk

))
. We use the above

upper bound since we are not able to show that Q(γk) = O
(

1√
Vk

)
. Therefore, as in Section 2.3.3,

we have that

πl(0) = Ω

 √
V

log
(

1
V

) (1− λ

ru

)( 1√
V

log( 1
V )
) , (3.13)

= Ω


√
V

log
(

1
V

) 1(
1

1− λ
ru

)( 1√
V

log( 1
V )
)
 .
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With k
∆
= 1

log 1

(1− λ
ru )

e we then have that

πl(0) = Ω


√
V

log
(

1
V

) 1

(
1

1− λ
ru

)log 1

(1− λ
ru )

[( 1
V )]

(
k√
V

)

 = Ω

V ( k√
V

+ 1
2

)
log
(

1
V

)
 . (3.14)

Furthermore, we have the following lower bound πl(q
′) on π(q′), where q′ = max {q : µ(q) < λ}.

We note that for µ < λ, there exists a m1 > 0 such that c(µ)− l(µ) ≤ m1 (λ− µ). Also for µ ≥ λ,

there exists a m2 > 0 such that c(µ)− l(µ) ≤ m2 (µ− λ). Then we have that

V = E [c(µ(Q))− l(µ(Q))] ≤
∑

q:µ(q)<λ

m1 (λ− µ(q))π(q) +
∑

q:µ(q)≥λ

m2 (µ(q)− λ)π(q).

V ≤ m1

∑
q≤q′

(λ− µ(q))π(q) +m2

∑
q>q′

(µ(q)− λ)π(q),

= m1

λπ(0) +
∑

1≤q≤q′
(λπ(q)− λπ(q − 1))

+m2

∑
q>q′

(π(q − 1)− π(q))λ,

≤ m1λπ(q′) +m2λπ(q′), or,

π(q′) ≥ πl(q
′)

∆
=

V

λ (m1 +m2)
. (3.15)

We note that q′ could be zero, in which case the sum
∑

1≤q≤q′ (λπ(q)− λπ(q − 1)) is defined to

be zero.

Lemma 3.2.18. For any sequence of non-idling order-optimal admissible policies γk, with C(γk)−
c(λ) = Vk ↓ 0, and QA = {q : µ(q) ∈ A} for a A ⊆ [0, rmax], we have that

|QA| =


O
(

1
Vk

log
(

1
Vk

))
, if A =

[
0, λ− a2V

( 1−δ
2 )

k

]
,

Ω
(

1√
Vk

)
, if

[
λ− a2V

( 1
2)

k , λ+ a2V
( 1

2)
k

]
⊆ A,

O
(

1
Vk

)
, if A = {λ} ,

where 0 ≤ δ ≤ 1, and a2 >
1
a1

if δ = 0.

Proof. Consider a particular policy γ in the above sequence with C(γk) − c(λ) = V . Let A =[
0, λ− a2V

( 1−δ
2 )
]
. Then, from (3.11) we have that Pu {A} = V δ

a1a2
. Consider a q such that
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µ(q) ∈ A. Then π(q) ≥ πl(q), where

πl(q)
∆
= πl(0)

(
λ

λ− a2V
( 1−δ

2 )

)q
,

and πl(0) is given in (3.14). As in (2.32) if q1 = max {q : µ(q) ∈ A}, then the smallest integer q1,u

such that

q1,u∑
q=0

πl(q) ≥
V δ

a1a2
,

is an upper bound on q1. We have that

πl(0)

( λ

λ− a2V
( 1−δ

2 )

)q1,u+1

− 1

 ≥ V ( 1+δ
2 )

a1

(
λ− a2V

( 1−δ
2 )
)

From (3.14), we have that for small enough V , there exists a a3 > 0 such that

πl(0) ≥

a3V

(
k√
V

+ 1
2

)
log
(

1
V

)
 .

So if q′1,u is the smallest integer such that( λ

λ− a2V
( 1−δ

2 )

)q′1,u+1

− 1

 ≥ V ( 1+δ
2 )

a1

(
λ− a2V

( 1−δ
2 )
)
 log

(
1
V

)
a3V

(
k√
V

+ 1
2

)
 ,

then q′1,u ≥ q1,u. Or we have that q′1,u is the smallest integer such that

q′1,u ≥

log

 V ( 1+δ
2 )

a1

(
λ−a2V

( 1−δ
2 )

)
(

log( 1
V )

a3V

(
k√
V

+ 1
2

)
)

log

(
λ

λ−a2V
( 1−δ

2 )

)
As V ↓ 0, we have that q′1,u = O

(
1
V log

(
1
V

))
. IfQA = {q : µ(q) ∈ A}, then |QA| = O

(
1
V log

(
1
V

))
.

Now consider A =
[
λ− a2V

( 1
2), λ+ a2V

( 1
2)
]
, where a2 >

1
a1

. We have that Pl(A) = 1 − 1
a1a2

.

Let q1 = max
{
q : µ(q) < λ− a2V

( 1
2)
}

. Then from (3.7) we have that π(q1) ≤
√

V
a1λ2 . Then for

every q ∈ A, we have that

π(q) ≤ πu(q)
∆
=

√
V

a1λ2

(
λ

λ− a2V
( 1

2)

)q−q1
. (3.16)
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Let QA = {q : µ(q) ∈ A}. We now obtain a lower bound on |QA|. From (2.31), if ql,a is the largest

integer such that

ql,a∑
q=0

√
V

a1λ2

(
λ

λ− a2V
( 1

2)

)q
≤ 1− 1

a1a2
, (3.17)

then ql,a ≤ |QA|. This is equivalent to finding the largest integer ql,a such that

√
V

a1λ2

((
λ

λ− a2V
( 1

2)

)ql,a
− 1

)
≤

(
1− 1

a1a2

)
a2V

1
2

λ− a2V
1
2

,(
λ

λ− a2V
( 1

2)

)ql,a
− 1 ≤

(
1− 1

a1a2

)
a1

√
a2λ2

λ− a2V
1
2

.

Then as in the proof of Lemma 3.2.2 we have that ql,a = Ω
(

1√
V

)
.

Consider Qλ = {q : µ(q) = λ}. We note that π(Qλ) ≤ 1. We also note that for every q ∈ Qλ,

π(q) ≤ πl(q)
∆
= πl(q

′) defined in (3.15). As in (2.32), if qu,λ is the smallest integer such that

qu,λπl(q
′) ≤ 1,

then qu,λ is an upper bound on |Qλ|. Hence we obtain that |Qλ| = O
(

1
V

)
.

Remark 3.2.19. From the above proof, the intuition behind choosing the buffer partition to scale

as Ω
(

1√
V

)
can be observed.

3.2.4 Tradeoff problems which are similar to INTERVAL-µCHOICE

In this section, we consider tradeoff problems which are similar to INTERVAL-µCHOICE, for

which an asymptotic characterization can be obtained using the techniques presented above for

INTERVAL-µCHOICE. We note that for INTERVAL-µCHOICE, we restricted to admissible policies

γ for which λ(q) = λ, ∀q ∈ Z+, and λ was such that u(λ) ≥ uc. The counterpart INTERVAL-

λCHOICE of INTERVAL-µCHOICE is one in which we restrict to admissible policies γ for which

µ(q) = µ, ∀q ∈ {1, 2, . . .} and λ(q) ∈ [0, ra,max].

We note that C(γ) for such a policy γ is (1 − π(0))c(µ), which depends on the policy, unlike

INTERVAL-µCHOICE where the choice of λ fixed U(γ) to be u(λ). For INTERVAL-λCHOICE,

we restrict to admissible γ such that µ(q) = µ, ∀q > 0, where µ is such that c(µ) ≤ cc, so that

C(γ) ≤ cc. The tradeoff problem INTERVAL-λCHOICE is

minimize γ∈Γa Q(γ)

and U(γ) ≥ uc. (3.18)
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The optimal value of the above problem is denoted as Q∗(uc). We also note from Lemma 2.2.2, that

the maximum value of U(γ) over all admissible γ is u(µ). We obtain an asymptotic characterization

of Q∗(uc) in the asymptotic regime <, where uc ↑ u(µ).

We assume that µ is such that ra,max > µ. If ra,max = µ, then we note that only the non-

admissible policy γ, with λ(q) = ra,max, ∀q, can achieve u(µ). Intuitively, if uc ↑ u(µ), then since

Eλ(Q) = Eµ(Q) = (1− π(0))µ ↑ µ, we have that π(0) ↓ 0. Then for any policy which is feasible

as uc ↑ u(λ), π(0) ↓ 0. Thus, intuitively for problem (3.18) we do not have a case where Q∗(uc)

increases only up to a finite value as uc ↑ u(µ) (unlike INTERVAL-µCHOICE-2-1).

As for INTERVAL-µCHOICE, we consider the following cases for INTERVAL-λCHOICE:

INTERVAL-λCHOICE-1: u(λ) is strictly concave for λ ∈ [0, ra,max].

INTERVAL-λCHOICE-2: u(λ) is piecewise linear and concave. That is, (a) there exists a minimal

partition of [0, ra,max] into intervals {[ai, bi], i ∈ {1, . . . , P}} with a1 = 0, bP = rmax, and

bi = ai+1 and (b) there are linear functions fi such that ∀µ ∈ [ai, bi], fi(λ) = u(λ). This is

further subdivided into two cases:

1. aµ
∆
= ai < µ < bµ

∆
= bi, for some i ≥ 1.

2. µ = aµ
∆
= ai, for some i > 1.

Remark 3.2.20. We note that for the discrete time queueing model, we only consider the case where

the utility function is linear, since for such models we are interested in the average throughput as

the performance measure. We note that INTERVAL-λCHOICE-2-1 encompasses the case of linear

utility functions. For linear utility functions, we can motivate the choice of system parameters for

INTERVAL-λCHOICE-2-1 as done for the case of INTERVAL-µCHOICE. INTERVAL-λCHOICE-2-

1 with linear utility function is a simplified model for a discrete time queueing model, where the

service batch size is fixed (but if the queue length is less than this fixed batch size, then the service

batch size is equal to the queue length) and there is randomized admission control. The fixed

service batch size is modelled by the fixed µ, while the admission control is modelled by the choice

of the arrival rate λ(q) as a function of q. In light of the discussion in Section 3.1 we assume that

λ(q) takes values in a finite interval.

We now present an asymptotic characterization of Q∗(uc) in the regime uc ↑ u(µ). We note that for

INTERVAL-λCHOICE-1 as well as for INTERVAL-λCHOICE-2 it is possible to show (see Lemma

3.2.28) that there exists a sequence of admissible policies γk such that U(γk) ↑ u(µ). We note that

for every uc < u(µ), ∀ε > 0, there exists some feasible γ ∈ Γa such that Q(γ) ≤ Q∗(uc) + ε. Such

an admissible policy is called ε-optimal in the following.

We first present asymptotic lower bounds on Q∗(uc) in the regime uc ↑ u(µ). Asymptotic lower

bounds for INTERVAL-λCHOICE are obtained along similar lines as for INTERVAL-µCHOICE. For
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all cases, we first obtain upper bounds on the stationary probability of certain arrival rates (rather

than service rates), which go to zero as uc ↑ u(µ). Then as before, these upper bounds on the

stationary probability of certain arrival rates lead to constraints on the stationary probability of all

queue lengths. Since the stationary probability of the queue length determines the average queue

length, the constraints determine the behaviour of average queue length as uc ↑ u(µ).

For the asymptotic analysis of INTERVAL-λCHOICE, we define a line l(λ) whose definition is similar

to that of l(µ) for INTERVAL-µCHOICE. For INTERVAL-λCHOICE-1, l(λ) is defined as the tangent

to u(λ) at λ = µ. For INTERVAL-λCHOICE-2-1, l(λ) is defined as the line through (aµ, u(aµ)) and

(bµ, u(bµ)), while for INTERVAL-λCHOICE-2-2, l(λ) is any line through (aµ, u(aµ)) with slope m,

such that du(λ)
dλ

−
|λ=µ < m < du(λ)

dλ

+
|λ=µ. We note that l(λ) ≥ u(λ) and El(λ(Q)) = l(Eλ(Q)).

We also note that the function l(λ)− u(λ) is a convex function.

We now present a result, which formalizes the intuition that π(0) ↓ 0 as uc ↑ u(µ).

Lemma 3.2.21. For INTERVAL-λCHOICE, for any sequence of admissible policies such that u(µ)−
U(γk) = Vk ↓ 0, we have that π(0) = O(Vk). Therefore, as uc ↑ u(µ), π(0) ↓ 0, for any sequence

of feasible policies for (3.18).

Proof. Consider a particular policy γ in the sequence with Vk = V . We note that U(γ) ≤ u(Eλ(Q)).

Since γ is admissible, we have that U(γ) ≤ u(Eµ(Q)). We then have that u−1(U(γ)) ≤ Eµ(Q) =

(1− π(0))µ, since u−1(.) exists if u(λ) is concave and increasing in λ. Therefore, we have that

π(0) ≤ 1− u−1(U(γ))

µ
= 1− u−1(u(µ)− V )

µ
.

We note that u−1(x) ≥ l−1(x), x ∈ R+, where l−1(.) is the inverse function of l(λ). Then we have

π(0) ≤ 1− l−1(u(µ)− V )

µ
= 1− l−1(u(µ))−mV

µ
=
mV

µ
,

since u(µ) = l(µ) and where m is the slope of l−1. Therefore, for the sequence γk, π(0) = O(Vk).

For INTERVAL-λCHOICE, as uc ↑ u(µ), for any sequence γk of feasible policies, u(µ)−U(γk) ↓ 0

and hence π(0) ↓ 0.

For any policy, the set of arrival rates {λ(q) : q ∈ Z+} is countable and is denoted as (λ0, λ1, . . . ),

with λk < λk+1. For an admissible policy, let πλ(k) denote the stationary probability of using an

arrival rate λk, i.e., πλ(k) = Pr {λ(Q) = λk} =
∑
{q:λ(q)=λk} π(q).

We make the following assumption, which is similar to (C2):

U2: For INTERVAL-λCHOICE-1, the second derivative of u(λ) at λ = µ is non-zero.
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Lemma 3.2.22. For INTERVAL-λCHOICE-1, for any sequence of non-idling admissible policies

γk such that u(µ) − U(γk) = Vk ↓ 0, we have that Q(γk) = Ω
(

1√
Vk

)
. Therefore, Q∗(uc) =

Ω

(
1√

u(µ)−uc

)
.

Proof. The proof follows that of Lemma 3.2.2, but with some minor differences. We again consider

a particular policy in the sequence with Vk = V . Let λ∗
∆
= µ + εV , where εV > 0 is a function of

V to be chosen later. As in the proof of Lemma 3.2.2, we have that

V =

∞∑
q=0

π(q)

[
(µ− λ(q))

du(λ)

dλ
|λ=µ +G(λ(q)− µ)

]
,

where G(x) is a strictly convex function of x. As λ(q) − µ is bounded, we again have that there

exists a positive a1 such that

V ≥
∞∑
q=0

π(q)

[
(µ− λ(q))

du(λ)

dλ
|λ=µ + a1(λ(q)− µ)2

]
.

Since
∑∞

q=0 π(q) ≤ µ, we have that

V ≥
∞∑
q=0

π(q)a1(λ(q)− µ)2.

Let qλ∗
∆
= inf {q : λ(q) ≤ λ∗}. We note that unlike qµ∗ in Lemma 3.2.2, qλ∗ could be 0. We proceed

as in the proof of Lemma 3.2.2 by choosing εV = a2

√
V . Then Pr {Q < qλ∗} ≤ 1

a1a2
if qλ∗ > 0.

As before, we choose a2 such that Pr {Q < qλ∗} ≤ α
2 , where α can be made arbitrarily close to

zero. If qλ∗ = 0, then Pr {Q < qλ∗} = 0 ≤ 1
a1a2

.

As in the proof of Lemma 3.2.2 we find the largest q such that Pr {Q ≤ q} ≤ 1
2 . We note that if

q ≥ qλ∗ , then π(q − 1)λ∗ ≥ π(q)µ. Then by induction we obtain that for any q ≥ qλ∗ ,

q∑
q=qλ∗

π(q) ≤ π(qλ∗)

q−qλ∗∑
m=0

(
λ∗

µ

)m
. (3.19)

We note that this is similar to (3.4), except that we express the above upper bound in terms of

π(qλ∗) rather than π(qµ∗ − 1) in (3.4), since qλ∗ could be zero.

If qλ∗ = 0, then from Lemma 3.2.21 we have that π(qλ∗) = π(0) = O(V ). If qλ∗ > 0, we obtain

an upper bound on π(qλ∗), as in the proof of Lemma 3.2.2. We have that

V

a1
≥

∑
q<qλ∗

π(q)(λ(q)− µ)2 ≥

 ∑
q<qλ∗−1

(λ(q)− µ)π(q)

2

.
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Since for q > 0, since π(q)λ(q) = µπ(q + 1), we proceed as in the proof of Lemma 3.2.2 to obtain

that

V

a1
≥ (µπ(qλ∗)− µπ(0))2 ,

= µ2π(qλ∗)
2 + µ2π(0)2 − 2µ2π(qλ∗)π(0).

Since π(0) ≥ 0 and π(0) = O(V ) from Lemma 3.2.21, we have that

V

a1
+ 2µ2π(qλ∗)π(0) ≥ µ2π(qλ∗)

2,

V

a1
+ 2µ2O(V ) ≥ µ2π(qλ∗)

2,

or π(qλ∗) = O(
√
V ).

We note that for both qλ∗ = 0 or qλ∗ > 0, we have that π(qλ∗) = O(
√
V ).

We now proceed as in the proof of Lemma 3.2.2, by using (3.19), to find the largest integer q such

that

π(qλ∗)

q−qλ∗∑
m=0

(
λ∗

µ

)m
≤ 1

2
− α

2
.

The rest of the proof is similar to that of Lemma 3.2.2, and we obtain that Q(γk) = Ω
(

1√
Vk

)
.

Then given a sequence of uc,k ↑ u(µ), we have that there exists a sequence of feasible γk such

that Q(γk) ≤ Q∗(uc,k) + ε, for some ε > 0. Therefore, Q∗(uc,k) = Ω

(
1√

u(µ)−uc,k

)
, since

uc,k ≤ U(γk).

Lemma 3.2.23. For INTERVAL-λCHOICE-2-1, if bi = bµ and i < P , then for any sequence of non-

idling admissible policies γk such that u(µ)−U(γk) = Vk ↓ 0, we have that Q(γk) = Ω
(

log
(

1
Vk

))
.

Therefore Q∗(uc) = Ω
(

log
(

1
u(µ)−uc

))
.

Proof. The proof follows that of Lemma 3.2.6. We define λ∗ = bµ + ε, where ε > 0. Let

qλ∗ = inf {q : λ(q) ≤ λ∗}. We note that qλ∗ could be 0, unlike qµ∗ in Lemma 3.2.6.

If qλ∗ = 0, then we have that π(qλ∗) = π(0) = O(V ). If qλ∗ > 0, then we have that

V =
∑
λk>λ∗

(l(λk)− u(λk))πλ(k),

≥ maεPr {λ(Q) > λ∗} ,

where ma is the tangent of the angle made by the line passing through (bi = bµ, u(bµ)) and

(bi+1, u(bi+1)) with l(µ). Or we have that Pr {Q < qλ∗} ≤ V
maε

and π(qλ∗ − 1) ≤ V
maε

. Since
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π(qλ∗ − 1)λ(qλ∗ − 1) = π(qλ∗)µ we have that π(qλ∗) ≤ π(qλ∗ − 1)
ra,max
µ . We note that therefore

π(qλ∗) = O(V ) for both qλ∗ = 0 and qλ∗ > 0.

Now proceeding as in the proof of Lemma 3.2.6 we have that for any q ≥ qλ∗ (we express the bound

in terms of π(qλ∗))

q∑
q=qλ∗

π(q) ≤ π(qλ∗)

q−qλ∗∑
m=0

(
λ∗

µ

)m
. (3.20)

We note that independently of whether qλ∗ is 0 or not, if we find the largest q such that

q∑
q=qλ∗

π(q) ≤ 1

2
− V

a1ε
,

then Q(γ) ≥ q
2 . We now proceed as in the proof of Lemma 3.2.6, using the upper bound in (3.20)

and π(qλ∗) = O(V ) to obtain that Q(γk) = Ω
(

log
(

1
Vk

))
. Now given a sequence of uc,k ↑ u(µ),

we have that there exists a sequence of feasible γk such that Q(γk) ≤ Q∗(uc,k) + ε, for some ε > 0.

Therefore, Q∗(uc,k) = Ω
(

log
(

1
u(µ)−uc,k

))
, since uc,k ≤ U(γk).

Remark 3.2.24. We note that the above lemma is used to obtain an asymptotic lower bound on

Q∗(uc). As far as this asymptotic lower bound is concerned, the above lemma can be used even

when if i = P , where i is such that bi = bµ. We consider INTERVAL-λCHOICE-2-1 for a larger Xλ
defined as follows. We extend Xλ to X λ = Xλ ∪ (bP , bP + δ], for some δ > 0. We also extend the

definition of u(.) to X λ, by choosing a piecewise linear function on (bP , bP + δ] which preserves the

strictly increasing concave property of u(.). We denote Q∗(uc) when λ(q) ∈ X λ, by Q∗e(uc). Then

we note that Q∗e(uc) ≤ Q∗(uc). The asymptotic lower bound for Q∗e(uc) follows from the above

lemma, which then also holds for Q∗(uc).

Remark 3.2.25. We note that the above asymptotic lower bound holds even in the case where

aµ = 0. For INTERVAL-µCHOICE-2, we note that the case with aλ = 0 corresponds to the case

INTERVAL-µCHOICE-2-1, for which Q∗(cc) only increased to a finite value.

Remark 3.2.26. We note that in many cases, for queueing models with a single queue, the utility

constraint is on the average throughput. Then we have that u(λ) is a line segment, with aµ = 0

and bµ = ra,max. We note that the asymptotic Ω
(
log
(

1
V

))
lower bound holds for Q∗(uc), from

the discussion in Remark 3.2.24.

Lemma 3.2.27. For INTERVAL-λCHOICE-2-2, for any sequence of non-idling admissible policies

γk such that u(µ)− U(γk) = Vk ↓ 0, we have that Q(γk) = Ω
(

1
Vk

)
.

Proof. The proof follows that of Lemma 3.2.9. We choose λ∗ = µ + εV = aµ + εV . Let qλ∗ =

inf {q : λ(q) ≤ λ∗}. We note that qλ∗ could be 0, unlike qµ∗ in Lemma 3.2.9.

99



If qλ∗ is 0, then we note that π(qλ∗) = π(0) = O(V ) from Lemma 3.2.21. If qλ∗ > 0, then we have

that

V =
∑
λk>λ∗

(l(λk)− u(λk))πλ(k),

≥ maεPr {λ(Q) > λ∗} ,

where ma is the tangent of the angle made by the line passing through (ai = aµ, u(amu)) and

(ai+1, u(ai+1)) with l(µ). Or we have that Pr {Q < qλ∗} ≤ V
maεV

and π(qλ∗ − 1) ≤ V
maεV

. We

also note that since π(qλ∗ − 1)λ(qλ∗ − 1) = π(qλ∗)µ we have that π(qλ∗) ≤ π(qλ∗ − 1)
ra,max
µ .

Therefore π(qλ∗) ≤ V
maεV

ra,max
µ . We choose εV = a2V , so that

ra,max
maµa2

≤ α
2 , where α << 1.

Then, as in the proof of Lemma 3.2.9, if q is the largest integer such that

q∑
q=qλ∗

π(q) ≤ 1

2
− α

2
,

then Q(γ) ≥ q
2 , independently of whether qλ∗ = 0 or not.

We note that for any q ≥ qλ∗ we have that

q∑
q=qλ∗

π(q) ≤ π(qλ∗)

q−qλ∗∑
m=0

(
λ∗

µ

)m
. (3.21)

We also note that if qλ∗ > 0, then we have that

V ≥
∑
λk>λ∗

ma (λk − µ)πλ(k),

= ma

∑
q<qλ∗

(λ(q)− µ)π(q),

= maµπ(qλ∗)− µπ(0).

Then since π(0) = O(V ) we have that π(qλ∗) = O(V ). Thus independently of whether qλ∗ = 0 or

not, we have that π(qλ∗) = O(V ).

Now proceeding as in the proof of Lemma 3.2.9, using the above upper bound on π(qλ∗) in (3.21)

we have that Q(γk) = Ω
(

1
Vk

)
. Now given a sequence of uc,k ↑ u(µ), we have that there exists a

sequence of feasible γk such that Q(γk) ≤ Q∗(uc,k) + ε, for some ε > 0. Therefore, Q∗(uc,k) =

Ω
(

1
u(µ)−uc,k

)
, since uc,k ≤ U(γk).

We note that as for INTERVAL-µCHOICE, using policies with similar structure as in Lemmas 3.2.11,

3.2.14, and 3.2.16 it is possible to obtain an asymptotic upper bound for INTERVAL-λCHOICE-1
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and tight asymptotic upper bounds for INTERVAL-λCHOICE-2-1 and INTERVAL-λCHOICE-2-

2. Here, we obtain a single asymptotic upper bound for INTERVAL-λCHOICE-1, INTERVAL-

λCHOICE-2-1, and INTERVAL-λCHOICE-2-2, which shows that u(µ) = supγ∈Γa,M U(γ).

Lemma 3.2.28. There exists a sequence of admissible policies γk such that Q(γk) = O
(

1
Vk

)
and

u(µ)− U(γk) = Vk.

Proof. The proof follows that of Lemma 3.2.16 (which follows from that of Lemma 2.3.14). Consider

a policy γ defined as follows:

λ(q) =

µ for q ∈ {0, . . . , q1} ,

µ−K for q ∈ {q1 + 1, . . .} ,

where q1 = 1
U for positive U . The sequence of policies γk is obtained by choosing U from a

sequence Uk ↓ 0.

We note that

U(γ) = Pr {Q ≤ q1}u(µ) + Pr {Q > q1}u(µ−K),

= u(µ)− Pr {Q > q1} (u(µ)− u(µ−K)).

Or u(µ)− U(γ) = Pr {Q > q1} (u(µ)− u(µ−K)) .

We also note thatQ(γ) = O (q1) = O
(

1
U

)
. Therefore we have that Pr {Q ≤ q1}µ+Pr {Q > q1} (µ−

K) = (1− π(0))µ. Or

(1− Pr {Q > q1})µ+ Pr {Q > q1} (µ−K) = (1− π(0))µ,

µ+ Pr {Q > q1} (−K) = µ− µπ(0), or

Pr {Q > q1} =
µπ(0)

K
.

Following the proof of Lemma 2.3.14, we have that π(0) = O (U). Hence, we have that Pr {Q > q1} =

O (U). Therefore, for the sequence of policies γk, we have that u(µ) − U(γk) = O(Uk). If

Vk
∆
= u(µ)− U(γk), then we have that Q(γk) = O

(
1
Vk

)
.

Remark 3.2.29. Since the techniques used in the analysis of INTERVAL-µCHOICE and INTERVAL-

λCHOICE are similar, we expect that asymptotic bounds on any sequence of order-optimal policies

can be obtained for INTERVAL-λCHOICEas for INTERVAL-µCHOICE. We note that the role of

µ(q) and λ(q) are interchanged. For example, using a similar sequence of steps as in the proof

of Lemma 3.2.18, it is possible to show that for a sequence of non-idling order-optimal admissi-

ble policies with u(µ) − U(γk) = Vk ↓ 0, |QA| = Ω
(

1√
Vk

)
for INTERVAL-λCHOICE-1, where

QA =
{
q : λ(q) ∈ [µ− a2V

1
2 , µ+ a2V

1
2 ]
}

and a2 > 0.
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3.3 Analysis of INTERVAL-λµCHOICE

We recall that for INTERVAL-λµCHOICE we restrict to policies γ such that λ(q) ∈ [ra,min, ra,max]

and µ(q) ∈ [0, rmax], ∀q ∈ Z+. The tradeoff problem for INTERVAL-λµCHOICE is:

minimize γ∈Γa Q(γ)

such that C(γ) ≤ cc,

and U(γ) ≥ uc, (3.22)

whose optimal value is Q∗(cc, uc). Although it is possible to consider various forms of the function

c(µ) as in the case of FINITE-µCHOICE and INTERVAL-µCHOICE, here we obtain a complete

analysis for the case c(µ) being a strictly convex function of µ ∈ [0, rmax] (with assumption C2)

and u(λ) being either a strictly concave (with assumption U2) or a piecewise linear function of

λ ∈ [ra,min, ra,max]. The reason for this assumption is the motivating discrete time problem,

described below. We then comment on the asymptotic bounds for other forms of c(µ) in the

following discussion.

Remark 3.3.1. INTERVAL-λµCHOICE corresponds to the tradeoff problem for the following dis-

crete time queueing model. Work arrives in a batch of random size, in every slot, into an infinite

buffer queue. The queue length is the amount of unfinished work and evolves on R+. The amount

of work which is admitted into the queue can be controlled, as a function, possibly randomized,

of the current queue length. This feature is modelled by the control of the arrival rate, λ(q), in

INTERVAL-λµCHOICE. The amount of work done by the server in each slot, or the service batch

size, can also be chosen as a function, possibly randomized, of the current queue length and is as-

sumed to be a non-negative real number. This feature of the discrete time queue is modelled by the

control of the service rate, µ(q), in INTERVAL-λµCHOICE. We note that the drift in the discrete

time queueing model is real valued. In light of the discussion in Section 3.1 we assume that λ(q)

and µ(q) take any non-negative real values, but in finite intervals. In each slot, assume that there

is a utility accrued with admitting customers and a service cost incurred in serving them. These are

modelled by the utility rate and service cost rate functions u(.) and c(.) in INTERVAL-λµCHOICE.

We choose c(µ) to be strictly convex as for INTERVAL-µCHOICE-1. Another motivating factor for

considering c(·) to be strictly convex, is the need to explain the logarithmic Θ
(
log
(

1
V

))
behaviour

of the average queue length when admission control is allowed, noticed by Neely in [44], compared

to the Ω
(

1√
V

)
behaviour of the average queue length, with strictly convex c(·), when admission

control is not allowed. We note that in [44], since there was only a constraint on the average

throughput, the function u(.) need only be linear, while the following result is presented for the case

of strictly convex or piecewise linear u(.).

Remark 3.3.2. In this analysis, we assume that uc ≤ u(ra,max). If uc > u(ra,max), then there

does not exist any feasible policies for (3.22) We note that if uc = u(ra,max), then policies which
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satisfy this utility constraint need to have λ(q) = ra,max,∀q, in which case the problem is the same

as that considered in INTERVAL-µCHOICE-1 (if ra,max < rmax). We also note that the restriction

of analysis to admissible policies implicitly requires that u−1(uc) < rmax.

Lemma 3.3.3. For INTERVAL-λµCHOICE, with ra,min > 0, the service cost C(γ) for any admis-

sible policy γ is bounded below by c(u−1(uc)).

Proof. To find a lower bound on the service cost for any admissible policy γ, we consider the follow-

ing equivalent formulation of TRADEOFF (2.4) and use a series of relaxations on the constraints.

The minimum average service cost for a given average queue length constraint qc and a utility

constraint uc is given by

min
γ∈Γa

Eπc(µ(Q)),

such that Eπu(λ(Q)) ≥ uc, and EπQ ≤ qc.

We note that for every qc < ∞, we have that Eπλ(Q) = Eπµ(Q). So the optimal value of the

optimization problem above is bounded below by the optimal value of

min
γ∈Γa

Eπc(µ(Q)),

such that Eπu(λ(Q)) ≥ uc, and Eπλ(Q) = Eπµ(Q).

Since u(λ) is concave in λ, we have that for every γ such that Eπu(λ(Q)) ≥ uc, u(Eπλ(Q)) ≥ uc.
Therefore the optimal value of the problem above is bounded below by the optimal value of

min
π

Eπc(µ(Q)),

such that Eπλ(Q) ≥ u−1(uc), and Eπλ(Q) = Eπµ(Q),

where we are considering all possible distributions π for Q. Now since c(µ) is convex in µ, we obtain

that the optimal value of the above problem is ≥ c(u−1(uc)). Therefore C(γ) ≥ c(u−1(uc)).

In the following, as in the case of FINITE-µCHOICE and INTERVAL-µCHOICE, we consider

INTERVAL-λµCHOICE in the asymptotic regime < where the service cost constraint cc approaches

c(u−1(uc)), where uc is kept fixed.

3.3.1 Asymptotic lower bound

In this section we find an asymptotic lower bound on Q(γk) for any sequence of non-idling admissible

policies γk for which U(γk) ≥ uc and C(γk) ↓ c(u−1(uc)). Subsequently, in Lemma 3.3.7 we

show that there exists a sequence of non-idling admissible policies γk for which C(γk) approaches

c(u−1(uc)) arbitrarily closely.
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We note that, as in the case INTERVAL-µCHOICE, even though the service rate µ(q) can take any

value in [0, rmax] and the arrival rate λ(q) can take any value in [ra,min, ra,max], the sets of service

rates and arrival rates used by γ are both countable as the queue length takes only integer values.

We first present the asymptotic lower bound for the case when ra,min > 0, for which the proof is

very similar to the case INTERVAL-µCHOICE-1, and then consider the case ra,min = 0.

Lemma 3.3.4. For INTERVAL-λµCHOICE, for any sequence of non-idling admissible policies γk

such that C(γk)− c(u−1(uc)) = Vk ↓ 0 and U(γk) ≥ uc, we have that

Q(γk) = Ω

(
log

(
1

Vk

))
.

Proof. Consider a particular policy γ in the sequence γk with Vk = V . Since γ is admissible, we

have that Eπµ(Q) = Eπλ(Q). From the concavity of u(λ), we have that Eπλ(Q) ≥ u−1(uc). Let

µ∗ = u−1(uc)−εV , where εV is a function of V to be chosen later. Define qµ∗ = inf {q : µ(q) ≥ µ∗}.
We note that ∀q < qµ∗ , µ(q) < µ∗. As µ(q) is non-decreasing, we have that

Pr {Q < qµ∗} = Pr {µ(Q) < µ∗} .

Let the countable set of service rates be denoted by {µ0 = 0, µ1, . . .}, where µi < µi+1 and

µi ∈ [0, rmax]. Let l(µ) be the tangent line at (u−1(uc), c(u
−1(uc))) to the curve c(µ). Then

V =
∑∞

q=0 [c(µ(q))− l(µ(q))]π(q). From Proposition 3.A.1, we have a positive a1 such that

V ≥ a1

∞∑
q=0

[
µ(q)− u−1(uc)

]2
π(q) ≥ a1

qµ∗−1∑
q=0

[
µ(q)− u−1(uc)

]2
π(q).

Hence

Pr {Q ≤ qµ∗ − 1} ≤ V

a1ε2V
,

and π(qµ∗ − 1) ≤ V

a1ε2V
.

Now, since Q(t) is a birth death process ∀q, we have that π(q)λ(q) = π(q + 1)µ(q + 1). For any

q ≥ qµ∗ ,

π(q + 1) =
π(q)λ(q)

µ(q + 1)
≤ π(q)ra,max

µ∗
,

π(q) ≤ π(qµ∗ − 1)

(
ra,max
µ∗

)q−qµ∗+1

. (3.23)

Let q be the largest integer such that
∑q

q=0 π(q) ≤ 1
2 . We find a lower bound on q as in the proof
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of Lemma 2.3.6. We note that Pr {Q ≥ qµ∗} ≥ 1 − V
a1ε2V

. Let εV = ε, where 0 < ε < u−1(uc).

For V small, let q1 be the largest integer such that

q1∑
q=qµ∗

π(q) ≤ 1

2
− V

a1ε2V
.

Then q1 ≤ q. We find a lower bound on q1 by using the upper bound on π(q) from (3.23). Let q2

be the largest integer such that

π(qµ∗ − 1)

q2−qµ∗+1∑
q=1

(
ra,max
µ∗

)q
≤ 1

2
− V

a1ε2V
.

Then q2 ≤ q1. After substituting for µ∗, we have that any q2 satisfying the above inequality is such

that

q2 − qµ∗ + 1 ≤ log(
ra,max

u−1(uc)−εV

)(1 +
ra,max − u−1(uc) + εV

ra,max

1

π(qµ∗ − 1)

(
1

2
− V

a1ε2V

))
.

Hence we obtain that q2 is at least

log(
ra,max

u−1(uc)−εV

)(1 +
ra,max − u−1(uc) + εV

ra,max

1

π(qµ∗ − 1)

(
1

2
− V

a1ε2V

))
− 2.

We note that 1
π(qµ∗−1) ≥

a1ε2

V and is the dominant term in the regime where V ↓ 0. Since

q ≥ q1 ≥ q2 and Q(γ) ≥ q
2 , we have that for any sequence of γk with C(γk)− u−1(uc) = Vk ↓ 0,

Q(γk) = Ω
(

log
(

1
Vk

))
.

Remark 3.3.5. We note that in this proof, no use was made of the assumption that the sequence of

policies satisfies the constraint Eπu(λ(Q)) ≥ uc. The difficulty in problem INTERVAL-λµCHOICE,

is to actually construct such a sequence of policies.

In the above proof, we note that there exists a set Qh of queue lengths occurring with high

probability, such that µ(q) → u−1(uc), for every q ∈ Qh as V ↓ 0. But for every q ∈ Qh, it is

possible to ensure through arrival rate control that the service rate µ(q) is not equal to the arrival

rate λ(q), while for Lemma 3.2.2 µ(q) = λ for all queue lengths with high probability. Hence, for

admissible policies, for q ∈ Qh, the stationary probability distribution geometrically grows and then

decays which leads to the log
(

1
V

)
behaviour.

Remark 3.3.6. The case when ra,min = 0 or λ(q) ∈ [0, ra,max] :

We note that if ra,min = 0, then the birth death process may not be irreducible on Z+. Therefore,

in this case, admissible policies are assumed to induce a single positive recurrent class including

zero. In Lemma 3.3.4 we had assumed that ra,min > 0. If ra,min = 0, then for an admissible policy

γ, there could exist q such that λ(q) = 0. Let q′ = inf {q : λ(q) = 0}. Note that q′ is in general
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dependent on the parameters cc and uc. If q′ is infinity, then the same approach as in Lemma

3.3.4 holds. If q′ is finite, then as γ is admissible, ∀q > q′, λ(q) = 0. Hence all states q > q′ are

transient and in steady state we need only consider the CTMC evolving on {0, . . . , q′}. Note that∑q′

q=0 π(q) = 1 and therefore q in Lemma 3.3.4 is smaller than q′. Therefore, the same approach

as in Lemma 3.3.4 holds even if q′ is finite.

3.3.2 Asymptotic behaviour of the tradeoff curve

In this section, we construct a sequence of admissible policies γk which achieves the minimum

average service cost c(u−1(uc)) arbitrarily closely with Q(γk) scaling at the optimal rate as in

Lemma 3.3.4. However, we are able to obtain an asymptotic upper bound only for the case where

u(λ) is strictly concave or linear (and not piecewise linear).

Lemma 3.3.7. For INTERVAL-λµCHOICE, with u(λ) strictly concave or linear, there exists a

sequence of admissible policies γk with a corresponding sequence Vk ↓ 0 such that

Q(γk) = O
(

log

(
1

Vk

))
,

C(γk)− c(u−1(uc)) = Vk,

U(γk) ≥ uc.

The construction of the sequence of admissible policies γk is motivated by the following intuition,

that we have obtained from the lower bound in Lemma 3.3.4. The sequence of policies should

be such that as Vk ↓ 0, the service rate used, at a queue length occurring with high probability,

should be close to u−1(uc). But the arrival rate λ(q) should not exactly equal u−1(uc), for all

queue lengths q which occur with high probability. Then it should be possible to have a stationary

distribution which is geometrically growing and then decaying, leading to the required log
(

1
Vk

)
scaling of Q(γk).

Proof. Consider a policy γ of the following form :

µ(0) = 0,

µ(q) = µ1 = u−1(uc)− εU , for q ∈ {1, . . . , q1} ,

µ(q) = µ2 = u−1(uc) + εU , for q ∈ {q1 + 1, . . .} ;

and λ(q) = λ1, for q ∈ {0, . . . , q1 − 1} ,

λ(q) = u−1(uc), for q ∈ {q1, . . . , q1 +K} ,

λ(q) = λ2, for q ∈ {q1 +K + 1, . . .} .
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Let εU = U , λ1 > u−1(uc) > λ2, λ1 > µ1, λ2 < µ2, and q1 =

⌈
log(λ1

µ1

) (1 + λ1−µ1

λ1

1
U

)⌉
, We will

specify K, λ1, and λ2 later. Let dc(u−1(uc))
dµ

∆
= dc(µ)

dµ |µ=u−1(uc). We now obtain C(γ).

C(γ) = π(0).0 + πµ(µ1)c(µ1) + πµ(µ2)c(µ2),

= πµ(µ1)

(
c(u−1(uc)) + (−εU )

dc(u−1(uc))

dµ
+O(ε2U )

)
+

πµ(µ2)

(
c(u−1(uc)) + (εU )

dc(u−1(uc))

dµ
+O(ε2U )

)
,

≤ c(u−1(uc)) +O(U2) + (−εUπµ(µ1) + εUπµ(µ2))
dc(u−1(uc))

dµ
,

≤ c(u−1(uc)) + εU
dc(u−1(uc))

dµ
+O(U2),

≤ c(u−1(uc)) +O(U),

where dc(u−1(uc))
dµ

∆
= dc(µ)

dµ |µ=u−1(uc). Let V = C(γ) − c(u−1(uc)), then we have that V = O(U).

For γ, the average utility is

U(γ) = u(λ1)

q1−1∑
q=0

π(q)

+ uc

q1+K∑
q=q1

π(q) + u(λ2)

∞∑
q=q1+K+1

π(q).

Let λ1 = u−1(uc) + ε and λ2 = u−1(uc)− ε, where ε is a small positive constant. Then for strictly

concave and linear u(.) we have that

U(γ) ≥ uc +

ε q1−1∑
q=0

π(q)− ε
∞∑

q=q1+K+1

π(q)

D(u(u−1(uc))) +O(u(u−1(uc))),

where D(u(u−1(uc))) and O(u(u−1(uc))) are defined as follows. If u(.) is a strictly concave func-

tion, then it is differentiable at u−1(uc) and D(u(u−1(uc)))
∆
= du(λ)

dλ |λ=u−1(uc) and O(u(u−1(uc))) =

O(ε2), with the above inequality being an equality. If u(.) is linear then D(u(u−1(uc)))
∆
=

du(λ)
dλ |λ=u−1(uc) and O(u(u−1(uc))) = 0, with the above inequality being an equality.

In the following we show that
∑∞

q=q1+K+1 π(q) ≤
∑q1−1

q=0 π(q), in which case we have that U(γ) ≥
uc for sufficiently small ε (which is fixed and independent of V ). We have that

π(q) = π(0)

(
λ1

µ1

)q
, for q ∈ {1, . . . , q1} ,

π(q) = π(0)

(
λ1

µ1

)q1 (u−1(uc)

µ2

)q−q1
, for q ∈ {q1 + 1, . . . , q1 +K} ,

π(q) = π(0)

(
λ1

µ1

)q1 (u−1(uc)

µ2

)K (
u−1(uc)

µ2

)(
λ2

µ2

)q−q1−K−1

, for q ∈ {q1 +K + 1, . . .} .
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Therefore,

q1−1∑
q=0

π(q) = π(0) + π(0)

q1−1∑
q=1

(
λ1

µ1

)q
,

= π(0) + π(0)

(
λ1

λ1 − µ1

)((
λ1

µ1

)q1−1

− 1

)
.

And,

∞∑
q1+K+1

π(q) = π(0)

(
λ1

µ1

)q1 (u−1(uc)

µ2

)K (
u−1(uc)

µ2

) ∞∑
q=0

(
λ2

µ2

)q
,

= π(0)

(
λ1

µ1

)q1 (u−1(uc)

µ2

)K (
u−1(uc)

µ2 − λ2

)
.

If (
λ1

µ1

)q1 (u−1(uc)

µ2

)K (
u−1(uc)

µ2 − λ2

)
≤
(

λ1

λ1 − µ1

)((
λ1

µ1

)q1−1

− 1

)
+ 1 (3.24)

then
∑∞

q=q1+K+1 π(q) ≤
∑q1−1

q=0 π(q). We note that (3.24) can be simplified to the question

µ1

λ1 − µ1

?
≤
(
λ1

µ1

)q1 ( µ1

λ1 − µ1
−
(
u−1(uc)

µ2

)K (
u−1(uc)

µ2 − λ2

))
,

µ1

λ1 − µ1

?
≤
(
λ1

µ1

)q1 (u−1(uc)− εU
ε+ εU

−
(

u−1(uc)

u−1(uc) + εU

)K (
u−1(uc)

ε+ εU

))
,

µ1

λ1 − µ1

?
≤
(
λ1

µ1

)q1 (u−1(uc)

ε+ εU

)(
1− εU

u−1(uc)
−
(

1 +
εU

u−1(uc)

)−K)
.

We use the lower bound on q1, obtained by removing the ceiling, to arrive at the following question

:

u−1(uc)− εU
ε+ εU

?
≤
(

1 +
ε+ εU

u−1(uc)− εU
1

U

)(
u−1(uc)

ε+ εU

)(
1− εU

u−1(uc)
−
(

1 +
εU

u−1(uc)

)−K)

For sufficiently small U , with εU = U , we have that
(

1 + εU
u−1(uc)

)−K
≤ 1− KεU

2u−1(uc)
. So, instead

of the above question we can ask the stronger question

u−1(uc)− εU
ε+ εU

?
≤
(

1 +
ε+ εU

u−1(uc)− εU
1

V

)(
u−1(uc)

ε+ εU

)(
εU

u−1(uc)

(
K

2
− 1

))
.
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We choose K > 2
(

1 + (u−1(uc))2

ε

)
. Then we can ask the even stronger questions

u−1(uc)− εU
?
≤
(

1 +
ε+ εU

u−1(uc)− εU
1

V

)(
εU

(u−1(uc))
2

ε

)
,

u−1(uc)− εU
?
≤ ε+ εU

ε

(u−1(uc))
2

u−1(uc)− εU

which indeed hold. Hence for sufficiently small V and ε, U(γ) ≥ uc.

We now obtain Q(γ) using Proposition 2.A.1 with qε = q1 + 1. Hence,

Q(γ) =
(q1 + 1)(εU + ε+ ra.max)

εU + ε
+

rmax
2(εU + ε)

,

Q(γ) ≤ (q1 + 1)(ε+ ra,max)

ε
+
rmax

2ε
.

As q1 = O
(
log
(

1
U

))
, we obtain that Q(γ) = O

(
log
(

1
U

))
. We note that the policy γ is admis-

sible. The sequence of policies is obtained by choosing Uk = 1
k . We note that then we have a

corresponding sequence Vk = O(Uk). Thus, Q(γk) = O
(

log
(

1
Vk

))
, and we have that there exists

a sequence of admissible policies γk with a corresponding sequence Vk ↓ 0 such that

Q(γk) = O
(

log

(
1

Vk

))
,

C(γk)− c(u−1(uc)) = Vk,

U(γk) ≥ uc.

Remark 3.3.8. We note that the above proof also applies if u(λ) is piecewise linear and (u−1(uc), uc)

lies on a linear segment of the piecewise linear function u(λ). However, the proof does not apply if

u(λ) is piecewise linear and u−1(uc) is such that the slope of u(λ) changes at (u−1(uc), uc).

Using the asymptotic lower bound from Lemma 3.3.4, the asymptotic upper bound above, and

proceeding as in the proof of Proposition 2.3.9, we arrive at the following result.

Proposition 3.3.9. For INTERVAL-λµCHOICE, for strictly concave or linear u(λ), we have that

the optimal tradeoff curve Q∗(cc,k, uc) = Θ
(

log
(

1
cc,k−c(u−1(uc))

))
, for the sequence cc,k = C(γk),

for the sequence of policies γk in Lemma 3.3.7.

Remark 3.3.10. For INTERVAL-λµCHOICE, an admissible policy γ can be specified by the sets

Qµ,λ = {q : µ(q) = µ, λ(q) = λ} for all possible µ and λ. However, we are only able to obtain

bounds on sets of the form QA = {q : µ(q) ∈ A ⊆ [0, rmax]} for an asymptotic characterization

of a sequence of order-optimal admissible policies. These bounds can be derived using similar

techniques as in Section 3.2.3. For example, if ra,min > 0, then it can be shown that if A ⊆
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[0, u−1(uc)−a2V
1−δ

2 ]
⋃

[u−1(uc)+a2V
1−δ

2 ], for 0 < δ ≤ 1 and a2 > 0, then |QAc | = Ω
(

log
(

1
Vk

))
,

for a sequence of non-idling order-optimal admissible policies with C(γk)− c(u−1(uc)) = Vk ↓ 0.

3.3.3 Tradeoff problems which are similar to INTERVAL-λµCHOICE

In this section, we first consider other asymptotic regimes for (2.4), which are similar to INTERVAL-

λµCHOICE. We note that for INTERVAL-λµCHOICE, the utility constraint uc was kept fixed while

cc,k ↓ c(u−1(uc)). A similar problem (SP1) is one in which cc is fixed and uc,k ↑ u(c−1(cc)). Another

problem scenario (SP2) is one in which both cc,k and uc,k vary such that (a) cc,k− c(u−1(uc,k)) ↓ 0

or (b) u(c−1(cc,k))− uc,k ↓ 0.

We note that SP2(b) encompasses SP1 since the sequence uc,k can be chosen such that uc,k =

uc,∀k ∈ Z+. We now show that the asymptotic regime for SP2(b) is equivalent to that for SP2(a),

i.e., cc,k− c
(
u−1(uc,k)

)
↓ 0. We note that for any (uc,k) and (cc,k), for which the problem (3.22) is

feasible, and also such that u(c−1(cc,k))− uc,k ↓ 0, we have that ∀ε > 0, ∃Kε such that, ∀k > Kε,

u(c−1(cc,k))− ε ≤ uc,k ≤ u(c−1(cc,k)) (since uc,k ≤ u(c−1(cc,k)) if the problem (3.22) is feasible).

Then we have that u−1
(
u(c−1(cc,k))− ε

)
≤ u−1(uc,k) ≤ c−1(cc,k). For every cc,k, we define

l1,k(λ) (as in Section 3.2.4) to be (i) the tangent to u(λ) at (c−1(cc,k), u
(
c−1(cc,k)

)
), if u(λ) is

strictly convex, (ii) the line passing through (aµ, u(aµ)) and (bµ, u(bµ)), if u(λ) is piecewise linear

and c−1(cc,k) lies on a linear segment, and (iii) any line through (aµ, u(aµ)) with slope m, such

that du(λ)
dλ

−
|λ=µ < m < du(λ)

dλ

+
|λ=µ, if u(λ) is piecewise linear and c−1(cc,k) is a corner point of

u(λ). We note that l1,k(c
−1(cc,k)) = u(c−1(cc,k)) in all three cases. Then

u−1
(
u(c−1(cc,k))− ε

)
≥ l−1

1,k

(
u(c−1(cc,k))− ε

)
= l−1

1,k

(
u(c−1(cc,k))

)
−m1,kε,

where m1,k is the slope of l−1
1,k. Since l−1

1,k

(
u(c−1(cc,k))

)
= c−1(cc,k), we have that

c−1(cc,k)−m1,kε ≤ u−1(uc,k) ≤ c−1(cc,k),

c
(
c−1(cc,k)−m1,kε

)
≤ c(u−1(uc,k)) ≤ cc,k.

Let l2,k(µ) be the tangent to c(µ) at (c−1(cc,k), cc,k). Then we have that

l2,k
(
c−1(cc,k)−m1,kε

)
≤ c(u−1(uc,k)) ≤ cc,k,

cc,k −m2,km1,kε ≤ c(u−1(uc,k)) ≤ cc,k,

where m2,k is the slope of l2,k. We note that ∃M1,M2 ∈ R+ such that m1,k ≤M1 and m2,k ≤M2

for every k, since both u(λ) and c(µ) are defined on bounded domains. Since the above inequality

holds for every ε > 0 and k > Kε, we have that that cc,k − c(u−1(uc,k)) ↓ 0.

We now have the following result, under the stronger assumption that u(.) is m-strongly concave,
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with m > 0. The proof is similar to that of Lemma 3.3.4.

Lemma 3.3.11. For INTERVAL-λµCHOICE, for any sequence of non-idling admissible policies γk

and a sequence uc,k > 0 such that C(γk)− c(u−1(uc,k)) = Vk ↓ 0 and U(γk) ≥ uc,k, we have that

Q(γk) = Ω

(
log

(
1

Vk

))
.

Proof. The proof follows that of Lemma 3.3.4 closely. Hence, we only state the differences here.

We define µ∗ = u−1(uc,k)− εV and qµ∗ = inf {q : µ(q) ≥ µ∗}. We note that unlike in the proof of

Lemma 3.3.4, we define a different tangent line lk(µ) for every uc,k. Let lk(µ) be the tangent line

to c(µ) at (u−1(uc,k), c(u
−1(uc,k))). From Proposition 3.A.1, we have a positive a1,k such that

Vk ≥ a1,k

qµ∗−1∑
q=0

[
µ(q)− u−1(uc,k)

]2
π(q).

We note that unlike the proof of Lemma 3.3.4, here a1,k depends on the sequence uc,k. Let

a
∆
= infk {a1,k}. Since u(.) is m-strongly convex, we have that a ≥ m > 0. Then we have that

Pr {Q ≤ qµ∗ − 1} ≤ V

aε2V
,

and π(qµ∗ − 1) ≤ V

aε2V
.

Then, we proceed as in the proof of Lemma 3.3.4 to obtain that Q(γk) = Ω
(

log
(

1
Vk

))
.

We note that an asymptotic upper bound can be obtained by evaluating Q(γk), C(γk), and U(γk)

for a sequence of policies γk as in Lemma 3.3.7, but with uc now being the sequence uc,k. Then

we have the following result

Proposition 3.3.12. For INTERVAL-λµCHOICE, for strongly concave or linear u(λ), we have that

the optimal tradeoff curve Q∗(cc,k, uc,k) = Θ
(

log
(

1
cc,k−c(u−1(uc,k))

))
, for the sequence cc,k =

C(γk) and uc,k = U(γk), for the sequence of policies γk as above.

Remark 3.3.13. We note that for INTERVAL-λµCHOICE we have considered the case where

c(µ) is strictly convex and u(λ) is either strictly concave or linear (also piecewise linear for the

asymptotic lower bound in Lemma 3.3.4). Although we have not presented the analysis for other

forms of c(µ), such as when c(µ) is piecewise linear, here we outline how the methods presented in

Chapter 2 as well as this chapter can be used in obtaining asymptotic lower bounds in these cases,

in the asymptotic regime where cc,k ↓ c(u−1(uc)). Suppose c(µ) is piecewise linear and uc is fixed.

We note that as in INTERVAL-µCHOICE-2, we can define service rates µl and µu with respect

to u−1(uc) rather than λ. Then the asymptotic behaviour of Q∗(cc, uc) depends upon whether

(i) µl < u−1(uc) < µu and µl = 0 or (ii) otherwise. For case (i), we note that Q∗(cc, uc) only
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increases to a finite value, since we can fix λ(q) = u−1(uc) and apply the analysis of INTERVAL-

µCHOICE-2-1. However, we do not have an asymptotic lower bound in this case. For case (ii), we

can proceed as in the proof of Lemma 3.3.4, except that µ∗
∆
= µl − ε, where ε > 0, to obtain that

Q∗(cc, uc) is Ω
(
log
(

1
V

))
.

3.4 Conclusions

In this chapter, we have considered the asymptotic characterization of the tradeoff problem for the

state dependent M/M/1 model, with model features chosen such that insights can be obtained for

the tradeoff problem for discrete time queueing models also. From the analysis, we see that for

INTERVAL-µCHOICE and INTERVAL-λµCHOICE the constraint on the average service cost, in

the regime <, leads to constraints on the stationary probability distribution of the service rate µ(Q)

and therefore the stationary probability distribution of the queue length which in turn determines

the asymptotic growth of the minimum average queue length as a function of the average service

cost. The exact nature of these constraints and the behaviour of the stationary distribution of the

queue length depends on the nature of c(µ) at µ = λ and the extent of freedom in the choice of

λ(q) and µ(q) at a queue length q.

We observe that if c(µ) is strictly convex at λ, then in the asymptotic regime < as V = cc−c(λ) ↓ 0,

the stationary probability of any queue length q such that µ(q) 6= λ goes to zero. More precisely,

as V ↓ 0, µ(q) for q ∈ Qh (the set of queue lengths with high probability) has to approach λ, the

stationary probabilities for such queue lengths are equal and each is O(
√
V ). This leads to the 1√

V

behaviour for strictly convex c(µ). We expect that this is the same phenomenon which gives rise

to the Berry-Gallager asymptotic lower bound [7], but for admissible policies. In Chapters 4 and

5, we see that this particular behaviour of the stationary probability does carry over to the discrete

time model. Suppose, however that it is possible to control the arrival rates λ(q), as in the case

of INTERVAL-λµCHOICE. Then even though µ(q) for queue lengths q ∈ Qh have to approach a

single value u−1(uc), the drift for such q need not be zero, since λ(q) can be chosen to be different

from u−1(uc) for such q. In fact it is possible to chose λ(q) such that the drift is initially positive

and then negative for the set of queue lengths occurring with high probability so that the stationary

probability of the queue length has a geometrically increasing and decaying behaviour which leads

to the log
(

1
V

)
asymptotic growth for the minimum average queue length. We expect that this is

the reason for the O
(
log
(

1
V

))
behaviour observed by Neely [44], but for admissible policies. In

Chapter 5, we shall obtain an asymptotic lower bound for the discrete time model considered in

[44] using the above idea, for admissible policies.

When c(µ) is piecewise linear in µ, we note that either (λ, c(λ)) can be a corner point as in
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INTERVAL-µCHOICE-2-3 or (λ, c(λ)) can lie on a linear portion of c(µ) as in INTERVAL-µCHOICE-

2-1 or INTERVAL-µCHOICE-2-2. For INTERVAL-µCHOICE-2-3, as in the case of INTERVAL-

µCHOICE-1, we observe that as V ↓ 0, µ(q) for queue lengths in Qh has to approach λ, we again

observe that the drift (proportional to λ − µ(q)) for such queue lengths approaches zero, and the

stationary probabilities for such queue lengths are equal and each is O(V ). This leads to the 1
V

behaviour for INTERVAL-µCHOICE-2-3.

For INTERVAL-µCHOICE-2-1 and INTERVAL-µCHOICE-2-2, we note that as V ↓ 0 service rates

µ such that µl ≤ µ ≤ µu could be used, so that the drift for the set of queue lengths occurring with

high probability is not zero. For INTERVAL-µCHOICE-2-2, it is possible to choose µ(q) so that

the drift is initially increasing and then decreasing for the set of queue lengths occurring with high

probability. Then the stationary probability has a geometrically increasing and decaying behaviour

which leads to the log
(

1
V

)
behaviour. We expect that this is the reason behind the O

(
log
(

1
V

))
growth observed for the case of piecewise linear cost functions in [43]. For INTERVAL-µCHOICE-

2-1 we note that as V ↓ 0 the service rate 0 could be used, which for non-idling admissible policies

implies that the queue length 0 has positive stationary probability, even for V = 0. This intuitively

implies that the average queue length does not increase to infinity in this case.

Asymptotic bounds on any sequence of non-idling order-optimal admissible policies have been pre-

sented in Section 3.2.3. We have also discussed other variants of the tradeoff problem, such as

INTERVAL-λCHOICE, where only the arrival rate can be controlled. Even though INTERVAL-

λCHOICE is very similar to INTERVAL-µCHOICE we find that there are no cases for INTERVAL-

λCHOICE where the minimum average queue length increases to a finite value unlike INTERVAL-

µCHOICE. We observe that the asymptotic behaviour of the minimum average queue length as

the utility constraint is made arbitrarily close to the maximum value of the utility, can be obtained

using ideas which are similar to that of INTERVAL-µCHOICE, which shows that the method of

obtaining the asymptotic behaviour of the average queue length through its stationary distribution

for monotone policies is sufficiently general and provides a unified method which explains other

scenarios also.

We also note that through the analysis of the state dependent M/M/1 model, with proper choice

of model features, we get insights as to how to construct asymptotic lower bounds for the discrete

time models. In Chapter 4, we find bounds on the stationary probability distribution of the queue

length for the discrete time queueing model in the regime <, which have the asymptotic behaviour

as suggested by the above analysis. Thus these bounds lead to the right asymptotic behaviour of

the average queue length in the regime < for the discrete time queueing models.
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Appendices

3.A A lower bound for strictly convex functions

Proposition 3.A.1. Let g(x) : [0, R] → R+ be a finite strictly convex function, such that: (i)

g(0) = 0, (ii) g′(0) ≥ 0, and (iii) g′′(0) > 0. Then there exists a positive constant a such that

g(x) ≥ ax2, ∀x ∈ [0, R].

Proof. We note that at 0, g(0) = a.0. If ∃a > 0 such that for all x ∈ (0, R], g′(x) ≥ 2ax, then

g(x) ≥ ax2. So we have to prove that for all x ∈ (0, R], g′(x) ≥ 2ax. In essence, we have to

prove that it is possible to find a positive a such that ∀x ∈ (0, R], g
′(x)
x ≥ a. We note that if

infx∈(0,R]
g′(x)
x > 0, then it is possible to find such an a.

Now we prove that infx∈(0,R]
g′(x)
x > 0. Since both g′(x) and x are non-negative, g′(x)

x ≥ 0.

Suppose we assume that infx∈(0,R]
g′(x)
x = 0. Then we have that ∀ε > 0, ∃x such that g′(x)

x ≤ ε.

Consider a sequence εn ↓ 0, then there exists a sequence xn such that g′(xn)
xn
≤ εn. Note that as

xn ≤ R, we have that 1) limn→∞ g
′(xn) = 0 and 2) limn→∞

g′(xn)
xn

= 0. The sequence xn may not

be convergent. So we consider the subsequence ym such that limm→∞ ym = lim supn→∞ xn = y.

Note that limm→∞ g
′(ym) = 0 and limm→∞

g′(ym)
ym

= 0 as ym is a subsequence of xn. Now there

are two cases : 1) y > 0 and 2) y = 0. Let y > 0, then by continuity of g′(x) we have that g′(y) = 0.

But g′(y) > 0 for every y > 0 and we have a contradiction on the assumption that infx∈(0,R]
g′(x)
x =

0. Consider the second case when y = 0, then we have that limym→0
g′(ym)
ym

= 0. But note that

limx→0
g′(x)
x = g′′(0) > 0. Thus we again have a contradiction. Hence infx∈(0,R]

g′(x)
x > 0. We

choose a = 1
4 infx∈(0,R]

g′(x)
x .

3.B Application of the Berry-Gallager lower bounding technique [7]

in Remark 3.2.4 for INTERVAL-µCHOICE-1

For INTERVAL-µCHOICE, since we assume that µ(q) ≤ rmax, we can obtain a discrete time

process Qd[m],m ∈ Z+, by uniformizing the CTMC Q(t) at rate ru = λ + rmax as in Appendix

2.A. We now outline how the lower bounding technique in [7] can be applied to Qd[m] to obtain

the Ω

(
1√

cc−c(λ)

)
asymptotic lower bound for Q∗(cc) as cc ↓ c(λ). We first show that a slightly

modified form of [7, Lemma 4.1] holds for the uniformized process Qd[m] under an admissible

policy γ (we note that we are using admissibility as defined in Chapter 2 and not as in [7]). As

in [7, Appendix A], we have that Pr
{
Q <

⌈
2Q(γ)

⌉}
> 1

2 . Let qp = arg maxq∈{0,...,d2Q(γ)e} π(q).

Then we have that π(qp) ≥ 1
2d2Q(γ)e . Now we define Q̂d[m] = max (Qd[m], qp). Then as in [7,
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Appendix A] we can show that

π(qp)E
[
Q̂d[m+ 1]− Q̂d[m]|Qd[m] = qp

]
+

∞∑
q=qp+1

π(q) (λ− µ(q)) ≤ 0.

We note that E
[
Q̂d[m+ 1]− Q̂d[m]|Qd[m] = qp

]
= λ

ru
. Therefore we obtain that

π(qp)
λ

ru
+

∞∑
q=qp+1

π(q) (λ− µ(q)) ≤ 0, or,

∞∑
q=qp+1

π(q) (λ− µ(q)) ≤ − λ

ru2
⌈
2Q(γ)

⌉ .
Then to obtain the asymptotic lower bound on Q∗(cc) we use the above upper bound in step (49)

in the proof of [7, Proposition 4.2].
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CHAPTER 4

On the tradeoff of average queue length and average service cost

for discrete time single server queues

4.1 Introduction

In this chapter we consider the tradeoff between average queue length and average service cost for

the discrete time single server queueing models introduced in Chapter 1. Such discrete time models

are in some cases more appropriate for modelling resource allocation problems in communication

networks than the continuous time models considered in the previous chapters. A context in which

such a model and the following analysis may be appropriate is that of wireless networks with fading,

where one of the issues, which has been studied by many researchers (see [7], [29], [10], and [77]),

is the optimal tradeoff of the average power and average delay, when the service batch size is

dynamically chosen as a function of the fade state and the queue length. The characterization of

the tradeoff between average error rate and average delay, for a point-to-point noisy link, when

the service batch size is dynamically chosen as a function of the queue length, is another resource

allocation problem that motivates the model studied in this chapter. The tradeoff of average power

and average delay is dealt with in more detail in Chapter 5, whereas the tradeoff of average error

rate with average delay is considered in Chapter 6. In this chapter, we consider two simplified

discrete time models, with no admission control (i.e. A[m] = R[m],∀m) and a single environment

state, to develop the basic techniques for the characterization of such tradeoffs. The glossary of

notation that we use in this chapter is given in Table 4.1. We now summarize the methodology

that is used for obtaining the asymptotic lower bounds on the tradeoffs.
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Symbol Description

m slot index

A[m] random number of arrivals in slot m (after admission control)

Amax maximum number of arrivals in any slot

λ, σ2 mean and variance of A[1]

S[m] batch service size in slot m

Smax maximum batch service size

εa probability of A[m] exceeding Smax

Q[m] queue length at the start of (m+ 1)th slot

σ[m] history of queue evolution

γ policy - (S[1], S[2], · · · )
Γ set of all policies

Γs set of all stationary policies

Q(γ) average queue length for a policy γ

c(s) service cost for I-model; a function of integer valued batch service size s

cR(s) service cost for R-model; a function of real valued batch service size s

C(γ) average service cost for a policy γ

cc average service cost constraint

βcc non-negative Lagrange multiplier

cβcc (q, s) single stage cost; defined as q + βccc(s)

g∗β optimal average cost for unconstrained MDP

Jβ(q) relative value function for unconstrained MDP

γ∗β optimal stationary policy for unconstrained MDP

s∗β(q) action at state q for the optimal policy γ∗β

Rγ∗β recurrence class for γ∗β

Γa set of all admissible policies

s(q) average service rate at a queue length q

π stationary distribution for a policy which is clear from the context

πγ stationary distribution for policy γ

Q∗(cc) minimum average queue length over the set Γa under constraint cc

sl largest service batch size ≤ λ at which slope of c(.) changes

su smallest service batch size ≥ λ at which slope of c(.) changes

Table 4.1: Notation used in this chapter.
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4.1.1 Methodology

In this section, we summarize a scheme that is used in Chapters 4, 5, and 6 to obtain asymptotic

lower bounds on the minimum average queue length in the regime < as a function of the average

service cost constraint (Chapters 4 and 6) or average power constraint (Chapter 5). As in Chapters

2 and 3, we obtain a lower bound on the stationary mean queue length using an upper bound on the

stationary probability distribution of the queue length under the assumption that the queue length

process is a DTMC and ergodic. The average service cost (or average power) is then related to the

stationary probability distribution.

Let Q ∼ π, where π is the stationary probability distribution of the queue length. From Markov

inequality, we have that EπQ ≥ qPr {Q ≥ q}. Suppose Pru {Q < q} is any upper bound on the

stationary probability distribution Pr {Q < q}. If q is the largest q such that Pru {Q < q} ≤ α,

then we have that EπQ ≥ q (1− α). For convenience, we choose α = 1
2 .

The upper bounds Pru {Q < q} were obtained for the state dependent M/M/1 models in Chapters

2 and 3 using the detailed balance equations and lower bounds on the service rate µ(q). In Chapters

4, 5, and 6 we obtain geometric bounds on Pru {Q < q}, the first (Lemma 4.3.5) of which has

been obtained by assuming certain properties for the transition probability distribution while the

second (Lemma 4.3.7) has been obtained by extending the results available in Bertsimas et al. ([8]

and [9]).

We now illustrate this scheme for the case of integer-valued queue evolution through an example.

We will obtain that for the queueing process, the upper bound Pru {.} has a geometric form, i.e.,

Pru {Q < q} = π(0)ρq. For our tradeoff problem, it will turn out that a non-negative function D(q)

can be obtained, such that EπD(Q) is the difference between the average service cost and c(λ)

(which can be defined similarly as for INTERVAL-µCHOICE). Then if EπD(Q) ≤ V for a V > 0,

then we have that π(0)D(0) ≤ V , where D(0) > 0. Therefore, we have a further upper bound

on the stationary probability distribution, Pru {Q < q} = V
D(0)ρ

q. Then, the largest q1 such that

Pru {Q < q} ≤ 1
2 satisfies V

D(0)ρ
q1 ≤ 1

2 . Or we have that q1 =
⌊
logρ

(
D(0)
2V

)⌋
. In the asymptotic

regime <, as V ↓ 0, we obtain that q1 is Ω
(
log
(

1
V

))
and therefore so is the average queue length

as a function of V . Variations of this basic method are used throughout Chapters 4, 5, and 6 to

obtain the asymptotic lower bounds.

4.1.2 System model - Integer valued queue evolution

We assume time to be slotted, with slots indexed by m ∈ Z+. In each slot m, a random number

of customers A[m] ∈ Z+ arrive into the system. The arrival process (A[m],m ≥ 1) is assumed

to be IID with A[1] ≤ Amax, batch arrival rate EA[1] = λ < ∞, var(A[1]) = σ2 < ∞. The

customers arrive into an infinite buffer queue. In slot m, a batch of customers of size S[m] ∈ Z+
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is served. The batch of S[m] customers is removed from the queue at the end of the mth slot just

before the new batch of customers which arrive in the mth slot, A[m], is admitted. We assume

that S[m] ≤ Smax, where Smax is the maximum batch size that can be served. We also assume

that

A1 : Pr {A[1] > Smax} > εa > 0.

We note that the above assumption is similar to the assumptions made in the definition of admissible

policies in [7] and [43]. Furthermore, we note that the above assumption is reasonable, since the

maximum number of arrivals usually exceeds the maximum capacity Smax of service, but λ < Smax.

The number of customers in the queue at the start of the (m+ 1)th slot is denoted by Q[m]. We

assume that Q[0] = q0 ∈ Z+ customers. The queue evolution for m ≥ 0 is given by:

Q[m+ 1] = Q[m]− S[m+ 1] +A[m+ 1], (4.1)

where S[m + 1] ≤ min(Smax, Q[m]). We define a policy γ to be the sequence of batch sizes

(S[1], S[2], . . . ) under which the queue evolves according to (4.1). The set of all policies is denoted

by Γ. A policy γ is stationary if S[m+ 1] = S(Q[m]), ∀m, where S(q) is a randomized function of

q. The set of all stationary policies is denoted as Γs.

We assume that a service cost of c(s) is incurred when serving a batch of size s. For example, this

cost could be the expected number of symbols in error for the transmission of a batch of message

symbols. The function c(s) : {0, 1, . . . , Smax} → R+ is assumed to satisfy the following properties:

C1 : c(0) = 0,

C2 : c(s) is non-decreasing and convex 1 for s ∈ {0, . . . , Smax − 2}.

We now define the performance measures that we are interested in: a) The worst case average

queue length for a policy γ ∈ Γ is

Q(γ, q0) = lim sup
M→∞

1

M
E

[
M−1∑
m=0

Q[m]

∣∣∣∣∣Q[0] = q0

]
, (4.2)

and b) the worst case average service cost for a policy γ ∈ Γ is

C(γ, q0) = lim sup
M→∞

1

M
E

[
M∑
m=1

c(S[m])

∣∣∣∣∣Q[0] = q0

]
. (4.3)

1If Smax = 1, then there is no tradeoff. If Smax ≥ 2, then c(s + 2) − c(s + 1) ≥ c(s + 1) − c(s), ∀s ∈
{0, . . . , Smax − 2}.
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4.1.3 System model - Real valued queue evolution

We state only the differences from the model discussed in Section 4.1.2. We assume that the

arrival random variable A[m] ∈ [0, Amax] ⊂ R+, with mean λ <∞ and variance σ2 <∞. We also

assume that the service batch size S[m] ∈ [0, Smax] ⊂ R+. Similar to assumption A1, we make the

assumption:

RA1 : Pr {A[1]− Smax > δa} > εa,

where both δa and εa are positive real numbers. Let the initial queue length be q0 ∈ R+. We

have that the queue length Q[m] ∈ R+ and the evolution of Q[m] is given by (4.1) with S[m] ≤
min(Smax, Q[m−1]). We assume that there is a service cost cR(s) associated with the service of a

batch of size s. The function cR(s) : [0, Smax]→ R+ is assumed to satisfy the following properties:

RC1 : cR(0) = 0,

RC2 : cR(s) is strictly convex and increasing in s, for s ∈ [0, Smax].

In the following, the model with integer valued queue evolution is referred to as the I-model, while

the model with real valued queue evolution is referred to as the R-model. We note that R-model

with the strictly convex cR(s) cost function is usually used as an approximation to the I-model,

which has c(s) as the cost function.

We note that our I-model is a simplified version of the model studied by Goyal et al. [29], wherein

there is an additional state variable which is used to model fading, the arrival process is Markov,

and Smax = ∞. Our R-model is a simplified version of the model studied by Berry and Gallager

[7], wherein there is an additional fade state variable, and Smax =∞.

4.1.4 Overview

The tradeoff problem (1.7) for I-model and R-model is formulated as a constrained Markov decision

problem in Section 4.2. We consider the I-model first. For I-model, for certain values of the cost

constraint, we consider an equivalent unconstrained Markov decision problem (as in (1.8)) in Section

4.3.1. We also identify several properties that are possessed by any stationary deterministic optimal

policy for this problem. We then define the set of admissible policies, which are policies possessing

the above properties (the definition of admissible policies is similar to that in Chapter 2).

From Section 4.3.2 onwards, we consider the tradeoff problem for the set of admissible policies. In

Section 4.3.3 we characterize the infimum of the average service cost over all possible admissible

policies, which is equal to the minimum average service cost required for mean rate stability. We

identify three cases, which are similar to the three subcases for INTERVAL-µCHOICE-2, for which
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the asymptotic behaviour of the minimum average queue length is characterized. The asymptotic

behaviour of the minimum average queue length is obtained as for INTERVAL-µCHOICE-2, by first

obtaining upper bounds on the stationary probability of the queue length. One of these bounds is

a state dependent extension of the geometric bounds on the stationary probability of discrete time

Markov chains presented in [8] and [9]. In Section 4.3.4 we show that depending on the value of

the arrival rate, the minimum average queue length either (i) increases only to a finite value, or

(ii) increases as log
(

1
V

)
, or (iii) increases as 1

V , when the average service cost is V more than the

infimum of the average service costs for admissible policies. Asymptotic bounds on order-optimal

policies are presented in Section 4.3.5. We obtain an asymptotic lower bound on the minimum

average queue length for ergodic arrival processes in Section 4.3.7, when the average service cost

is V more than the infimum of the average service costs for admissible policies.

For R-model, we present an asymptotic analysis in Section 4.1.3. We obtain that the minimum

average queue length is Ω
(

1√
V

)
when the average service cost is V more than the infimum of the

average service costs for admissible policies, for strictly convex cR(s). Then we consider the case

where cR(s) is piecewise linear and show that the asymptotic behaviour of the minimum average

queue length is similar to that of the I-model.

4.2 Problem formulation for I-model and R-model

The tradeoff problem is to obtain Q∗(cc, q0), which is the optimal value of the optimization problem

minimize
γ∈Γ

Q(γ, q0) such that C(γ, q0) ≤ cc, (4.4)

where cc ≥ 0 is the average service cost constraint. The tradeoff curve Q∗(cc, q0) is non-increasing

and convex in cc (see [6]) for any q0. We note that if λ > Smax then any feasible policy for (4.4) is

optimal, as the average queue length for any such feasible policy is infinity. Hence, in the following

we assume that λ ≤ Smax.

4.2.1 A constrained Markov decision process formulation

The tradeoff problem (4.4) can be formulated as a constrained Markov decision problem (CMDP)

[2]. The state space of the CMDP is the state space of the queue length, which is Z+ for the I-model

and R+ for the R-model. The action spaces at each state q are the sets {0, . . . ,min(q, Smax)}
for the I-model and [0,min(q, Smax)] for the R-model, both of which are compact for every q.

The probabilistic evolution of the state of the CMDP from stage m to m + 1 is given by (4.1).

Associated with the CMDP there are two single stage costs: (i) the holding cost q at state q, and

(ii) the service cost c(s) when an action s is taken at state q.
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We redefine c(s) as the lower convex envelope2 of c(s), s ∈ {0, . . . , Smax}. We note that the

redefined cost function c(s) (c(s) : [0, Smax] → R+) is a piecewise linear convex function. From

[28] and [27], it is possible to show that if cc > c(λ) then (4.4) has an optimal solution and there

exists an optimal policy γ ∈ Γs.

In the following, we show that for some values of cc, there exists a stationary deterministic optimal

policy for (4.4). Consider the following MDP:

minimize
γ∈Γ

[
Q(γ, q0) + βcc(C(γ, q0)− cc)

]
. (4.5)

We note that the above MDP has a single stage cost of cβcc (q, s) = q + βccc(s) in state q. From

Ma et al. [35], it is known that if there exists a βcc > 0, such that any stationary deterministic

optimal policy for (4.5), has an average service cost equal to the constraint cc, then the same

policy is optimal for the constrained problem (4.4). The factor βcc can be interpreted as a Lagrange

multiplier. The set of values of cc for which such βcc exist is denoted as Ou, as in Chapter 2. We

note that the properties of any stationary deterministic optimal policy, which can be obtained from

(4.5), carry over to (4.4) if cc ∈ Ou.

We note that the development in Altman [2] which leads to Theorem 12.7, which shows that for

every value of the constraint cc, there exists a Lagrange multiplier for which there is a stationary

deterministic policy which is optimal for both the unconstrained MDP and the CMDP, requires

assumption (B1) [2, Chapter 11], which does not hold for our model.

In the next section, for the I-model we study (4.5) in detail. The properties of any stationary

deterministic optimal policy are then used to motivate the definition of a class of admissible policies.

The tradeoff problem (4.4) is then analysed for the class of admissible policies. We note that for

cc ∈ Ou, there exists at least one optimal admissible policy.

4.3 Asymptotic bounds for I-model

4.3.1 An unconstrained MDP formulation

The unconstrained MDP (4.5), which is obtained via the above Lagrange multiplier relaxation, is

studied in [29]. However, we note that the development in [29] does not lead to an average cost

optimality equation (ACOE). Since the ACOE enables us to obtain some additional properties of

the optimal policy, in the next section we use the results from Sennott [67] to show that there exists

a stationary deterministic average cost optimal policy, which also satisfies an ACOE, for a single

stage cost of cβ(q, s) for our model.

2We note that the lower convex envelope can be interpreted as the solution: c(s) = minimizeEc(X), such that
EX = s.
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The state space of the unconstrained MDP (4.5) is the state space Z+ of the queue length, which

is countable. The action space at each state q is the set {0, . . . ,min(q, Smax)} which is compact.

The probabilistic evolution of the state of the MDP from stage m to m+ 1 is given by (4.1). The

single stage cost for the unconstrained MDP is cβ(q, s) = q+βc(s), where β ≥ 0. We also assume

that:

A2 : Pr {A[1] = a} > 0, for all a ∈ {0, . . . , Amax},

Lemma 4.3.1. If λ < Smax, and if assumptions A1 and A2 hold, then there exists a stationary

deterministic optimal policy γ∗β for the unconstrained MDP, with optimal average cost g∗β satisfying

the following ACOE:

g∗β + Jβ(q) = min
s∈{0,...,min(q,Smax)}

{
cβ(q, s) + EJβ(q − s+A[1])

}
, ∀q ≥ 0,

with γ∗β using a batch size s∗β(q) at queue length q, satisfying

s∗β(q) = arg min
s∈{0,...,min(q,Smax)}

{
cβ(q, s) + EJβ(q − s+A[1])

}
, ∀q ≥ 0,

where Jβ(q) is the optimal relative value function.

The proof is given in Appendix 4.A. From now on, we assume λ < Smax and that A1 and A2 hold.

The following property of any optimal policy γ∗β can also be obtained.

O1 : any stationary deterministic optimal policy γ∗β is such that s∗β(q) is non-decreasing in q.

The proof of the above property is similar to that of Theorem 3.2 (iii) of [29], and is therefore

omitted. We now state some observations which are obtained from the above lemma and O1.

O2 : The optimal average cost g∗β is independent of the initial state q0 and is finite.

O3 : For any policy, from assumptions A1 and A2, we note that from state 0 it is possible to reach

any other state q. From O1, we obtain that any stationary deterministic optimal policy has a

single recurrence class Rγ∗β , of the form {qm, . . .}, where qm = min
{
q : ∃q′ > q, pq′,q > 0

}
,

and pq′,q = Pr {Q[m+ 1] = q|Q[m] = q′} for the optimal policy under consideration.

O4 : We note that s∗β(qm) = 0 by definition. From A2, we have that qm is an aperiodic state, and

therefore the class Rγ∗β of the Markov chain under γ∗β is aperiodic.

O5 : From Lemma 4.3.1, for γ∗β, for q ∈ Rγ∗β , we have that

g∗β + Jβ(q) = cβ(q, s∗β(q)) + EJβ(q − s∗β(q) +A[1]),
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which verifies the drift condition (10.13) from [37], with the Lyapunov function V (q) = Jβ(q),

for a Markov chain restricted to Rγ∗β . We also note that cβ(q, s∗β(q)) is near-monotone [37]

in q. Therefore using [37, Theorem 10.3], we obtain that any stationary deterministic optimal

policy is cβ-regular for a Markov chain on Rγ∗β . Then the Markov chain under γ∗β is positive

recurrent on Rγ∗β with an associated invariant distribution. Furthermore the expected total

cost of first passage from any state q ∈ Rγ∗β to another state q′ ∈ Rγ∗β is finite [37, Theorem

10.3].

Using property O5 of γ∗β we prove the following lemma, which shows that any optimal policy is in

fact non-idling. We note that if γ∗β is non-idling, then Rβ = Z+ and the Markov chain under γ∗β is

irreducible.

Lemma 4.3.2. Any stationary deterministic optimal policy γ∗β is non-idling, i.e., s∗β(q) > 0, for all

q ∈ Rγ∗β and q > 0.

The proof shows that if γ∗β is such that there exists a positive q1 ∈ Rγ∗β with s∗β(q1) = 0, then

it is possible to construct a history dependent non-stationary policy for which the average cβ(q, s)

cost is strictly less, contradicting the optimality of γ∗β. The essential steps in the proof are: a)

we consider a particular sample path of the queue evolution, for which it is assumed that at the

start of a slot m, Q[m − 1] = q1 with S[m] = 0, b) we obtain a new non-stationary policy which

advances the service of one customer3 from one of the succeeding slots to m while keeping the

departure times of all other customers unchanged, and c) we show that for this new policy the total

cβ(q, s) cost decreases because i) the delay of the customer whose departure time was advanced

has decreased and ii) convexity of the service cost function implies that the service cost at m, c(1),

is less than or equal to the decrease in service cost at the slot where the customer was being served

under policy γ∗β. Extension of the proof to the case of average cost, with the optimal policy being

not irreducible, is more technical and is therefore presented in Appendix 4.B.

We recall that by solving the unconstrained MDP, we are able to get solutions to problem (4.4),

with service cost constraint cc, only if a Lagrange multiplier β exists such that the optimal policy

for the unconstrained MDP with single stage cost cβ(q, s) has an average service cost equal to cc,

i.e, if cc ∈ Ou. Thus in general, the properties O1, O2, O3, O4, and O5, as well as Lemma 4.3.2

may not hold for all values of cc in the original problem (4.4).

4.3.2 The tradeoff problem

As noted in Section 4.2.1, we consider problem (4.4) for the set of randomized stationary policies Γs,

since there exists an optimal stationary policy. A policy γ ∈ Γs, specifies the service batch size S(q)

3Since q1 is positive at least one customer will be present in the system at slot m, who will be served in some slot
> m.
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at a queue length q. We note that S(q) is a random variable with support on {0, . . . ,min(Smax, q)}.
We further restrict the study of problem (4.4) to the set of stationary admissible policies, whose

definition is motivated by the properties O1, O2, O3, O4, O5, and Lemma 4.3.2. We now define

the notion of stability for a policy.

Stability: A policy γ ∈ Γs is said to be stable if: a) the Markov chain Q[m] under γ is posi-

tive recurrent with stationary distribution πγ on the recurrence class corresponding to q0 and b)

Q(γ, q0) <∞.

Admissibility: A policy γ is called admissible if:

G1 : it is stable,

G2 : it induces an aperiodic, irreducible Markov chain Q[m],

G3 : the average service rate at a queue length q, ES(q) is non-decreasing in q.

The set of all admissible policies is Γa. We note that the above properties of admissible policies

are motivated by the observations about stationary deterministic policies made in Section 4.3.1.

Property G1 is motivated by O2 and O5. Properties O3, O4 and Lemma 4.3.2 motivates property

G24, while G3 is motivated by O1. We note that the above definition of admissibility differs in the

addition of property G3, from the definitions of admissible policies which were used by Berry and

Gallager [7, Section IV] and Neely [43, Section III]. We also note that assumptions A1 and A2 have

been used to motivate G2, through the properties O3 and O4, but as in Berry and Gallager [7], we

could assume G2.

Remark 4.3.3. We now compare our definition of an admissible policy with that of Berry and

Gallager [7]. In [7], it is required that a sequence of admissible policies form an ergodic Markov

chain, i.e., an aperiodic, irreducible and positive recurrent Markov chain. Our admissible policies

are also assumed to satisfy the same properties. In [7], it is required that a sequence of admissible

policies γk are such that Q(γk) <∞ and limk→∞Q(γk) =∞. We also assume that Q(γk) <∞.

However, we do not assume that limk→∞Q(γk) = ∞. In fact, we shall see that for a particular

case (Case 1), the optimal sequence of policies γ∗k is such that limk→∞Q(γ∗k) < ∞. The third

property in [7], that admissible policies are assumed to satisfy is similar to our assumption A1. We

note that the additional property G3 can be used to obtain additional insights about any stationary

deterministic optimal policy. Furthermore, for cc ∈ Ou, there exists an admissible optimal policy.

From G1 and G2, the average queue length as well as the average service cost are independent

of the initial queue length since the Markov chain (Q[m]) is aperiodic, irreducible and stable [37].

4We note that the development of asymptotic lower bounds also holds under an assumption weaker than irre-
ducibility. We can assume that under the policy γ, (i) there is only a single positive recurrent class Rγ and (ii) the
expected cumulative queue length and expected cumulative service cost starting from any state q0 until Rγ is hit is
finite. We note under assumption A2 and G3, Rγ is a contiguous set.
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The average queue length and average service cost for γ ∈ Γa are therefore denoted by Q(γ) and

C(γ). We note that Q(γ) = EπγQ and C(γ) = Eπγc(S(Q)), where Q denotes the stationary

queue length. Since, in general, for every cc, we do not know if Lemma 4.3.2 holds for the optimal

constrained policy, admissible policies are not required to be non-idling.

Objective : Our objective is to obtain the optimal tradeoff curve Q∗(cc) while restricting our

attention to the class of admissible policies Γa, where Q∗(cc) is the optimal value of the following

optimization problem

TRADEOFF : minimize
γ∈Γa

Q(γ) such that C(γ) ≤ cc.

We note that the TRADEOFF problem can be formulated for a larger class of policies, which are

obtained by time sharing or mixing of policies γk ∈ Γa. Let Q∗M (cc) denote the optimal tradeoff

curve, when we consider time shared policies also. We note that the tradeoff curve Q∗M (cc) which

is obtained from time sharing is the lower convex envelope of the points (cc, Q
∗(cc)). Since the

asymptotic behaviour of Q∗M (cc) can be obtained from that of Q∗(cc), as in Chapter 2, in the

following we analyse Q∗(cc) only.

We note that given any ε > 0, and for any cc such that TRADEOFF is feasible, by definition there

exists an admissible policy γ such that Q(γ) ≤ Q∗(cc)+ε and C(γ) ≤ cc. Such a feasible admissible

policy is called ε-optimal in the following.

We note that for any γ ∈ Γa, we have that EπγS(Q) = λ. We recall that c(s) was redefined as the

piecewise linear lower convex envelope of c(s), s ∈ {0, . . . , Smax}. Then, from Jensen’s inequality,

we have that for any policy γ ∈ Γa, C(γ) = Eπγc(S(Q)) ≥ c(λ). Therefore, infγ∈Γa C(γ) ≥ c(λ).

We note that TRADEOFF does not have any feasible solutions if cc is less than c(λ).

We also note that c(λ) is also the minimum average service cost which has to be expended for

mean rate stability. In the following we show that c(λ) = infγ∈Γa C(γ). We obtain an asymptotic

characterization of Q∗(cc) in the asymptotic regime < as cc ↓ c(λ) in the next section.

4.3.3 Asymptotic analysis of TRADEOFF - Preliminaries

The ideas used in the analysis of TRADEOFF are the same as those used for the analysis of

INTERVAL-µCHOICE-2 in Chapter 3. However, bounds on the stationary probability of the queue

length for the DTMC (Q[m]) have to be developed, in order to relate the average service cost to

the average queue length. As in Chapter 3, we identify three different cases based on the nature of

the function c(s) at s = λ. The cases are defined in terms of the quantities sl and su defined as

127



follows:

su =

min {s : s ∈ {dλe , . . . , Smax − 1} , c(s+ 1)− c(s) > c(s)− c(s− 1)} if this set is non-empty

Smax otherwise.

sl =

max {s : s ∈ {1, . . . , bλc} , c(s+ 1)− c(s) > c(s)− c(s− 1)} if this set is non-empty

0 otherwise.

We note that sl and su are analogous to the service rates µl and µu defined in chapter 3. The

three cases that we consider are:

Case 1 : sl = 0, sl < λ < su

Case 2 : sl > 0, sl < λ < su

Case 3 : sl = λ = su

We now show that c(λ) can in fact be approached arbitrarily closely.

Lemma 4.3.4. There exists a sequence of policies γεk ∈ Γa such that c(λ) can be approached

arbitrarily closely, i.e., limk→∞C(γεk) = c(λ). Therefore c(λ) = infγ∈Γa C(γ).

The proof is given in Appendix 4.C. We characterize the tradeoff curve Q∗(cc) in the asymptotic

regime where the cost constraint cc approaches c(λ).

Similar to the definition of the line l(µ) in Chapter 3, here we define the line l(s) : [0, Smax]→ R+

as follows:

1. If sl < λ < su, then l(s) is the line through (sl, c(sl)) and (su, c(su)).

2. If sl = λ = su, then l(s) is a line through (λ, c(λ)) with slope m chosen such that c(λ) −
c(λ− 1) < m < c(λ+ 1)− c(λ).

The different cases along with the line l(s) are illustrated in Figure 4.1. We note that Eπγ [c(S)− c(λ)] =

Eπγ [c(S)− l(S)].

For a particular policy γ, if there is no source for confusion we use π(q) to denote the stationary

probability of queue length being q. The stationary probability of using a particular batch size

s ∈ {0, . . . , Smax} is denoted by πs(s). We now present two results which are used in the asymptotic

characterization of Q∗(cc).

Lemma 4.3.5. For γ ∈ Γa, for some positive ε < sl, qs = inf {q : ES(q) ≥ sl − ε} , ρd =(
sl−ε
Smax

)
Pr {A[1] = 0}, and ρ = 1 + 1

ρd
, if Pr {Q < qs}

(
1 + ρ

ρd

)
< 1

2 , we have that

Q(γ) ≥ 1

2

[
logρ

[
1

2Pr {Q < qs}

]
− 1

]
,
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Figure 4.1: Illustration of the relationship between λ, sl, and su along with the minimum average cost c(λ)

and the line l(s) for the three cases

The proof is given in Appendix 4.D. The above result is useful in obtaining an asymptotic lower

bound to Q∗(cc) as cc ↓ c(λ), since in Cases 2 and 3, as cc ↓ c(λ), for any sequence of feasible

policies for TRADEOFF, Pr {Q < qs} ↓ 0.

Remark 4.3.6. We note that a similar asymptotic lower bound has been derived in [44, Theorem

2] (where admission control is allowed) and in [72, Theorem 2], where the assumption G3 has not

been used. Although, the above result has been derived independently, we note that underlying

all the three derivations, there is the idea of bounding the probability of an event by a particular

sequence of transitions for a Markov chain, i.e., a sequence of transitions in which the state of the

Markov chain becomes successively smaller. Furthermore, in our proof, using assumption G3, we

obtain geometric bounds on the stationary probability of any queue length, which is not available

in [44] as well as [72].

We note that in Chapter 3, since the queue length process Q(t) was a birth-death process, bounds

on the stationary probability of the queue length could be obtained relatively easily. However, in this

chapter, bounds on the stationary probability of discrete time Markov chains (DTMC) are required.

In the following lemma, we present three bounds on the stationary probability of the queue length,

one of which has been obtained by Bertsimas et al. [8] and [9] and the other two are state dependent

extensions of the geometric bounds on the stationary probability of discrete time Markov chains

presented in [8] and [9].

Lemma 4.3.7. Let (Q[m],m ≥ 0) be as in (4.1), for an admissible policy γ. Let εa be as defined

in assumption A1. Then,

TAIL-PROB [8] : Suppose ∀q ≥ 0, E [Q[m+ 1]−Q[m]|Q[m] = q] ≥ −d, where d is positive.

Then for any finite q1 and k ≥ 1 we have

Pr {Q ≥ q1 + k} ≥
(

εa
εa + d

)k
Pr {Q ≥ q1} .

129



TAIL-PROB-STATE-DEP-1 : Suppose there exists a qd such that

∀q ∈ {0, . . . , qd} ,E [Q[m+ 1]−Q[m]|Q[m] = q] ≥ −d,

where d is positive. Then for any q1, k ≥ 0 such that 0 ≤ q1 + k ≤ qd, we have

Pr {Q ≥ q1 + k} ≥
(

εa
εa + d

)k
Pr {Q ≥ q1}

+

(
1−

(
εa

εa + d

)k)[
Pr {Q ≥ qd + 1}

+
1

d

∞∑
q=qd+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q]

]
.

TAIL-PROB-STATE-DEP-2 : Suppose there exists a qd such that

∀q ∈ {0, . . . , qd} ,E [Q[m+ 1]−Q[m]|Q[m] = q] ≥ −d1,

and ∀q ∈ {qd + 1, . . .} ,E [Q[m+ 1]−Q[m]|Q[m] = q] ≥ −d2,

where d2 > d1 > 0. Then for any q1, k ≥ 0 such that 0 ≤ q1 + k ≤ qd, we have

Pr {Q ≥ q1 + k} ≥
(

εa
εa + d1

)k
Pr {Q ≥ q1} −

(
1−

(
εa

εa + d1

)k) d2 − d1

d1
Pr {Q ≥ qd + 1} .

The proof is presented in Appendix 4.E. We now present the asymptotic characterization of Q∗(cc)

as cc ↓ c(λ).

4.3.4 Asymptotic characterization of Q∗(cc) as cc ↓ c(λ)

We first consider Case 2, the proof of the following asymptotic lower bound has already been briefly

discussed in Section 4.1.1. We use the geometric bound based lower bound on Q(γ) from Lemma

4.3.5 to obtain the asymptotic lower bound for Case 2.

Lemma 4.3.8. For Case 2, given any sequence of admissible policies γk with C(γk)−c(λ) = Vk ↓ 0,

we have that Q(γk) = Ω
(

log
(

1
Vk

))
.

Proof. Let us consider a particular policy γ in the sequence γk with Vk = V . From the definition of

l(s) we have that EπES|Q [c(S(Q))− l(S(Q))] = V . From the convexity of c(s) and the linearity

of l(s) we have

∞∑
q=0

π(q) [c(ES(q))− l(ES(q))] ≤ V.
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Now as c(s) ≥ l(s), we have that

qs−1∑
q=0

π(q) (c(ES(q))− l(ES(q))) ≤ V,

where qs, as in Lemma 4.3.5, is inf {q : ES(q) ≥ sl − ε} for a positive ε < sl. We note that qs ≥ 1.

We note that for q < qs, c(ES(q))− l(ES(q)) ≥ mε, where m is the tangent of the angle made by

the line passing through (sl − 1, c(sl − 1)) and (sl, c(sl)) with l(s). Therefore we obtain that

Pr {Q < qs} ≤
V

mε
.

Using the above bound on Pr {Q < qs}, we have that for sufficiently small V , Pr {Q < qs} < 1
2 .

Then, from Lemma 4.3.5 we have that

Q(γ) ≥ 1

2

[
logρ

[mε
2V

]
− 1
]
,

where the upper bound V
mε on Pr {Q < qs} is used. Therefore for the sequence of policies γk with

Vk ↓ 0, we have that

Q(γk) = Ω

(
log

(
1

Vk

))
.

Remark 4.3.9. For Case 2, as for INTERVAL-µCHOICE-2-2, we have a set of queue lengths Qh,

which occur with high probability, such that ES(q) ∈ [sl, su],∀q ∈ Qh. Let the drift in state q

be ∆(q)
∆
= E [Q[m+ 1]−Q[m]|Q[m] = q]. We note that, intuitively the drift ∆(q) for q ∈ Qh

is increasing and then decreasing for in Qh. Then we expect that the stationary distribution of

the queue length is geometrically increasing and then decreasing as for INTERVAL-µCHOICE-2-2.

However, unlike INTERVAL-µCHOICE-2-2, for the discrete time model we are only able to obtain a

geometrically increasing upper bound. This bound suffices to obtain the Ω
(

log
(

1
Vk

))
asymptotic

lower bound in the above lemma.

We note that the model that is considered here is a simplified version of Neely’s [43] model - there is

only one queue evolving on Z+ and we have the fade state taking only a single value. The tradeoff

optimal control algorithm (TOCA) of [43] achieves the logarithmic tradeoff stated in the above

lemma but for the problem (4.4), since TOCA is not admissible. Therefore, we propose a sequence

of admissible policies that achieves the asymptotic logarithmic tradeoff of Q∗(cc) in Lemma 4.3.8.

Lemma 4.3.10. Let a policy γ be defined as follows. At a queue length q, γ serves a batch size

min(q, s̃(q)), where

s̃(q) =

sl, for 0 ≤ q < qv,

su, for qv ≤ q.

131



where qv > 0. We obtain a sequence of policies γk, by choosing qv = log
(

1
Vk

)
, where Vk < 1 is

a sequence decreasing to zero. Then for Case 2, γk is a sequence of admissible policies, such that

C(γk)− c(λ) = O(Vk) and Q(γk) = O
(

log
(

1
Vk

))
.

The proof of this lemma is given in Appendix 4.G. We that the structure of the sequence of policies

γk is similar to that in Lemma 2.3.12. We note that this proof is motivated by and borrows ideas

from the derivation of the asymptotic upper bound for the sequence of TOCA policies in [43,

Corollary 2]. This leads to the following asymptotic characterization for Case 2.

Proposition 4.3.11. For Case 2, the optimal tradeoff curve Q∗(cc,k) = Θ
(

log
(

1
cc,k−c(λ)

))
as

cc,k ↓ c(λ), for the sequence cc,k = C(γk), where γk is the sequence of policies in Lemma 4.3.10.

Proof. For the sequence cc,k = C(γk), we have that Q∗(cc,k) ≤ Q(γk) = O
(

log
(

1
cc,k−c(λ)

))
.

For ε > 0, consider any sequence of feasible ε-optimal admissible policies γ′k for the sequence cc,k.

We have that Q(γ′k) = Ω
(

log
(

1
cc,k−c(λ)

))
and Q(γ′k) ≤ Q∗(cc,k) + ε. Therefore, Q∗(cc,k) =

Ω
(

log
(

1
cc,k−c(λ)

))
. Hence, for cc,k = C(γk), we have that Q∗(cc,k) = Θ

(
log
(

1
cc,k−c(λ)

))
.

Remark 4.3.12. TOCA algorithm : We note that the set of all available power values (denoted

by Π in [43]) can be chosen such that the corresponding rates are {0, . . . , Smax}. As required in

[43], the set is compact. The TOCA algorithm is parametrized by positive numbers w, ε, q̃, and β.

The algorithm chooses at each slot m ≥ 1, the batch size sTOCA such that

sTOCA[m] = min

(
arg min

s∈{0,...,Smax}

{
βc(s)−W [m]s

}
, Q[m− 1]

)
,

where

W [m] = I {Q[m− 1] ≥ q̃}
[
wew(Q[m−1]−q̃) + 2X[m− 1]

]
+

I {Q[m− 1] < q̃}
[
−wew(q̃−Q[m−1]) + 2X[m− 1]

]
.

We note that sTOCA[m] = 0 if W [m] ≤ 0. The sequence X[m],m ≥ 0 is obtained from a virtual

queue which evolves according to

X[m+ 1] = max(X[m]− sTOCA[m+ 1] + εI {Q[m] < q̃} , 0) +A[m+ 1] + εI {Q[m] ≥ q̃} .

As in [43], let δmax = max(Amax, Smax). Let 0 < ε < min(λ − sl, su − λ), w = ε
δ2
max

e
−ε
δmax ,

and q̃ = 2
w log (β). A sequence of policies γk is generated by choosing a sequence βk = 1

Vk
, for a

sequence Vk ↓ 0. Then from [43, Corollary 2], we have that

Q(γk) = O
(

log

(
1

Vk

))
, C(γk) = c(λ) +O (Vk) .
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Therefore, we obtain that for the sequence of policies γk, Q(γk) = O
(

log
(

1
C(γk)−c(λ)

))
. We note

that W [m] is a non-decreasing function of q, where Q[m − 1] = q. Since sTOCA[m] is a non-

decreasing function of W [m], we have that sTOCA[m] is a non-decreasing function of Q[m − 1].

However, we note that sTOCA[m] is stationary only with respect to a state which includes an

additional state variable X[m − 1] and hence is not admissible. Therefore, the above bound is an

upper bound to the optimal value of (4.4) and not TRADEOFF.

If for any subsequence cc,k of Ou such that there exists a constant 0 < m ≤ 1 and a subsequence

cTOCA,k of C(γk) such that cTOCA,k ≤ cc,k and cTOCA,k − c(λ) ≥ m (cc,k − c(λ)), then we have

that Q∗(cc,k) ≤ Q(γk) = O
(

log
(

1
cTOCA,k−c(λ)

))
= O

(
log
(

1
cc,k−c(λ)

))
.

We now obtain an asymptotic characterization for Case 3. The method used is the same as

that summarized in Section 4.1.1, except that the geometric bound used is obtained from Lemma

4.3.7(TAIL-PROB-STATE-DEP-1). Furthermore, we will see that in the asymptotic regime <, the

geometric bound reduces to a constant bound, which leads to the specific form of asymptotic lower

bound for Case 3.

Lemma 4.3.13. For Case 3, given any sequence of admissible policies γk with C(γk)−c(λ) = Vk ↓
0, we have that Q(γk) = Ω

(
1
Vk

)
.

Proof. Let us consider a particular policy γ in the sequence γk with Vk = V . We define qd =

sup {q : ES(q) ≤ λ+ εV }, where εV > 0 will be chosen later. We note that as ES(0) = 0, the

above set is non-empty. Suppose we assume that qd is finite.

We note that by the admissibility of γ, ∀q ∈ {0, . . . , qd}, ES(q) ≤ λ + εV . Hence, using d = εV ,

we have from Lemma 4.3.7(TAIL-PROB-STATE-DEP-1), for a q̄ < qd :

Pr {Q ≥ q̄ + 1} ≥
(

εa
εa + εV

)q̄+1

+

(
1−

(
εa

εa + εV

)q̄+1
)Pr {Q ≥ qd + 1}+

1

εV

∞∑
q=qd+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q]

 .
Or

Pr {Q ≤ q̄} ≤ 1−
(

εa
εa + εV

)q̄+1

−(
1−

(
εa

εa + εV

)q̄+1
) 1

εV

∞∑
q=qd+1

E [Q[m+ 1]−Q[m]|Q[m] = q]π(q)

 ,(4.6)

as Pr {Q ≥ qd + 1} ≥ 0. For brevity, letDt
∆
= −

(
1
εV

∑∞
q=qd+1 E [Q[m+ 1]−Q[m]|Q[m] = q]π(q)

)
.

We note that Dt is positive, as for q ≥ qd + 1, E[Q[m + 1] − Q[m]|Q[m] = q] < −εV . Consider
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the expression for Dt. We have that for q ≥ qd + 1,

E [Q[m]−Q[m+ 1]|Q[m] = q] = ES(q)− λ

is positive as ES(q) > λ + εV . We note that by definition, c(s) is piecewise linear. Let m be

the tangent of the angle between (i) the line passing through (λ+ 1, c(λ+ 1)) and (λ, c(λ)), and

(ii) l(s). Then m
∑∞

q=qd+1 π(q) (ES(q)− λ) ≤
∑∞

q=qd+1 π(q) [c(ES(q))− l(ES(q))]. Furthermore

from the convexity of c(.), linearity of l(.), and as c(s)− l(s) ≥ 0, we have that

∞∑
q=qd+1

π(q) [c(ES(q))− l(ES(q))] ≤ Eπ [c(ES(Q))− l(ES(Q))] ≤ E [c(S(Q))− l(S(Q))] = V.

Therefore

Dt ≤
V

mεV
.

Now, as in the proof of Lemma 4.3.5, we find a lower bound q̄
2 on Q(γ) by finding the largest q̄

such that Pr {Q ≤ q̄} ≤ 1
2 . A lower bound q̄1 to q̄ can be obtained by using the upper bound (4.6)

on Pr {Q ≤ q̄}. Let q̄1 be the largest integer, if one exists, such that

1−
(

εa
εa + εV

)q̄1+1

−

(
1−

(
εa

εa + εV

)q̄1+1
) 1

εV

∞∑
q=qd+1

E [Q[m+ 1]−Q[m]|Q[m] = q]π(q)

 ≤ 1

2
.

Then q̄1 ≤ q̄. Then we have to find q̄1 such that

1−
(

εa
εa + εV

)q̄1+1

+

(
1−

(
εa

εa + εV

)q̄1+1
)
Dt ≤

1

2
,

or
1 + 2Dt

2 + 2Dt
≤
(

εa
εa + εV

)q̄1+1

,

or

(
1 +

εV
εa

)q̄1+1

≤ 2 + 2Dt

1 + 2Dt

We note that if qd =∞, then Dt = 0. However, q̄1 satisfying the above inequality for finite qd is a

lower bound for q̄1 for qd =∞. Hence, we proceed with finding the above q̄1. Let q̄2 be the largest

integer such that (
1 +

εV
εa

)q̄2+1

≤ 2

1 + 2Dt
. (4.7)

Then q̄2 ≤ q̄1. From (4.7) and the upper bound V
mεV

on Dt, if q̄3 is the largest integer such that

(
1 +

εV
εa

)q̄3+1

≤ 2

1 + 2 V
mεV

,
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then q̄3 ≤ q̄2. Or, we have that q̄3 is the largest integer such that

q̄3 + 1 ≤ log(
1+

εV
εa

)
(

2

1 + 2V
mεV

)
.

We note that, as V ↓ 0, if V
εV
→∞, then the bound will be negative. We choose εV = aV , where

a > 2
m . Then we obtain that

q̄3 ≤ log(
1+aV

εa

)
(

2

1 + 2
ma

)
− 1,

where the RHS is positive as V ↓ 0. Therefore the maximum q̄3 is at least⌊
log(

1+aV
εa

)
(

2

1 + 2
ma

)
− 1

⌋
.

Since Q(γ) ≥ q̄
2 ≥

q̄1
2 ≥

q̄2
2 ≥

q̄3
2 and log

(
1 + aV

εa

)
= Θ (V ), we have that for the sequence of

policies γk, Q(γk) = Ω
(

1
Vk

)
.

Remark 4.3.14. As for INTERVAL-µCHOICE-2-3, we note that there is a set of queue lengths Qh,

which occur with high probability. Let the drift in state q be ∆(q)
∆
= E [Q[m+ 1]−Q[m]|Q[m] = q].

Then Qh is the set of queue lengths such that ∆(q) → 0, for q ∈ Qh as cc ↓ c(λ). Intuitively, we

expect that the stationary probabilities of all queue lengths in Qh are equal. With εV chosen to be

aV as in the above proof, we have that

Pr {Q ≤ q} ≤

(
1−

(
εa

εa + aV

)q+1
)
× a constant,

≈ q
aV

εa
× another constant.

This suggests that the constant stationary probability for queue lengths inQh is O(V ), and therefore

we obtain the Ω
(

1
Vk

)
asymptotic lower bound in the above lemma.

Remark 4.3.15. We note that the sequence of randomized policies γεk in the proof of Lemma 4.3.4

is such that γεk is admissible and C(γεk)− c(λ) = εk and Q(γεk) = O
(

1
εk

)
as εk ↓ 0.

This leads to the following asymptotic characterization of case 3. The proof is similar to that of

Proposition 4.3.11.

Proposition 4.3.16. For Case 3, the optimal tradeoff curve Q∗(cc,k) = Θ
(

1
cc,k−c(λ)

)
as cc,k ↓ c(λ),

for the sequence cc,k = C(γεk).

Case 1: We note that in Case 1, Q∗(cc) does not grow to infinity as cc approaches c(λ). In

fact, the policy γu, which serves S[m + 1] = min(Q[m], su), has the finite minimum average
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queue length over all admissible policies which achieve an average service cost of c(λ). First of

all, we note that any admissible policy γ which has C̄(γ) = c(λ), will have Pr {S(q) > su} = 0,

∀q and Pr {S[m] > su} = 0,∀m ≥ 1. For a given realization of the arrival process and the

randomization of the batch sizes, let q∗[m] and q[m] be the evolution of the queue process under

γu and γ respectively. Then we note that q∗[m] ≤ q[m], ∀m, and therefore γu has the least average

queue length over all policies which have their average service cost equal to c(λ). Furthermore,

Q∗(cc) ≤ Q(γu) for cc ≥ c(λ).

For Case 1, we are only able to obtain a tight lower bound for a restricted case. We show that if

su = 1, then for any sequence of non-idling deterministic γk ∈ Γa, for which C(γk) − c(λ) = Vk,

we have that Q(γk) = σ2

2(su−λ) + λ
2 + O

(
Vk log

(
1
Vk

))
. We note that if su = 1, then Q(γu) =

σ2

2(su−λ) + λ
2 , from [19]. Thus as V ↓ 0, we have that the asymptotic lower bound has Q(γu) as the

limit point. Furthermore, we note that the asymptotic order matches with what that was derived

for FINITE-µCHOICE-1 in Chapter 2.

We present the lower bound on the average queue length in a series of steps. Consider a particular

policy γ in the above sequence in the sequence γk, with C(γ)− c(λ) = V .

Let qu
∆
= sup {q : s(q) ≤ su}. Since we have restricted attention to non-idling deterministic γ and

su = 1, we have that s(q) = su = 1 for q ∈ {1, . . . , qu}. In the following lemma, we obtain an

upper bound on Pr {Q > qu}, which will be used to obtain an upper bound on qu.

We note that from Assumption A1, Amax > Smax. Therefore starting from any queue length q,

the queue length in the next slot is at most q −Amax or q +Amax.

Lemma 4.3.17. For any non-idling deterministic γ ∈ Γa, if qu ≥ Amax, then for any k ≥ 0,

Pr {Q > qu + k} ≤ min

(
ρ

⌈
qu+k

2Amax

⌉
u , 1

)
,

where ρu = λ
su

.

The proof is discussed in Appendix 4.H. The proof is very similar to that of Lemma 1 of Bertsimas

[8] and [9] but with some slight modification. We note that c(s) ≤ c1(s), where

c1(s) =

c(s), for s ∈ [0, su],

c(su) + c(Smax)−c(su)
Smax−su (s− su) , for s ∈ (su, Smax].
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We note that c1(s) = l(s) for s ∈ [0, su]. Then,

V = C(γ)− c(λ) ≤ Eπ [c1(s(Q))− l(s(Q))] , and,

Eπ [c1(s(Q))− l(s(Q))] =
∑
q>qu

π(q) [c1(s(q))− l(s(q))] , and,∑
q>qu

π(q) [c1(s(q))− l(s(q))] ≤
∑
q>qu

π(q) [m(Smax − su)] ,

where m is the tangent of the angle between c1(s) and l(s) at su. Therefore, we have that

V ≤ m(Smax − su)
∑
q>qu

π(q), or,

P r {Q > qu} ≥
V

m(Smax − su)
. (4.8)

We now proceed to find a upper bound on qu by combining the above lower bound on Pr {Q > qu}
with the upper bound derived in Lemma 4.3.17.

We note that if qu < Amax, then Amax is an upper bound on qu. Suppose qu ≥ Amax, then from

Lemma 4.3.17 and (4.8), we have that

V

m(Smax − su)
≤ Pr {Q > qu} ≤ ρ

⌈
qu

2Amax

⌉
u ≤ ρ

qu
2Amax
u .

Since ρu < 1, we have that

(
1

ρu

) qu
2Amax

≤ m(Smax − su)

V
, or,

qu ≤ 2Amax log 1
ρu

[
m(Smax − su)

V

]
. (4.9)

Lemma 4.3.18. The average queue length for the policy γ,

Q(γ) ≥ σ2

2(su − λ)
+
λ

2
− Smax − su

su − λ

(
quPr {Q > qu}+

∞∑
q=qu

Pr {Q > q}

)
.

Proof. We note that the policy γ is admissible. Squaring both sides of the evolution equation (4.1),

taking expectations with respect to the stationary distribution, and simplifying we obtain that

2E [Q(S −A)] = EA2 + ES2 − 2EAES.

We note that EA2 − EAES = σ2. Since su = 1, we have that ES2 =
∑Smax

s=1 πs(s)s
2 ≥
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su
∑Smax

s=1 πs(s)s = λsu.

2EQ(S −A) ≥ σ2 + λ(su − λ), or,
∞∑
q=0

π(q)q(ES(q)− λ) ≥ σ2

2
+ λ(su − λ),

(4.10)

Or, we have that

∞∑
q=0

π(q)q(su − λ) +
∞∑

q=qu+1

π(q)q(Smax − su) ≥ σ2

2
+ λ(su − λ),

(su − λ)

∞∑
q=0

π(q)q ≥ σ2

2
+ λ(su − λ)− (Smax − su)

∞∑
q=qu+1

π(q)q

(4.11)

Simplifying the term
∑∞

q=qu+1 π(q)q, we have

∞∑
q=qu+1

π(q)q =
∞∑
q=1

(qu + q)π(qu + q),

= qu

∞∑
q=qu+1

π(q) +

∞∑
q=1

qπ(qu + q). (4.12)

Then from (4.11) we have that

Q(γ) ≥ σ2

2(su − λ)
+
λ

2
− Smax − su

su − λ

(
quPr {Q > qu}+

∞∑
q=qu

Pr {Q > q}

)
.

We now use the upper bound on qu from (4.9) and the upper bound on Pr {Q ≥ qu + k} from

Lemma 4.3.17, in the above lower bound on Q(γ) to obtain our final result.

Lemma 4.3.19. If su = 1, then for any sequence of non-idling, deterministic γk ∈ Γa such that

C(γk)− c(λ) = Vk ↓ 0, we have that Q(γk) = σ2

2(su−λ) + λ
2 −O

(
Vk log

(
1
Vk

))
.

Proof. We consider a γ in the sequence γk, with C(γ)− c(λ) = V . Then, from Lemma 4.3.18 we

have that

Q(γ) ≥ σ2

2(su − λ)
+
λ

2
− Smax − su

su − λ

(
quPr {Q > qu}+

∞∑
q=qu

Pr {Q > q}

)
.
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Consider
∑∞

q=qu
Pr {Q > q}. We have that

∞∑
q=qu

Pr {Q > q} =
∞∑
m=0

2Amax−1∑
k=0

Pr {Q > qu +m2Amax + k} . (4.13)

From the proof of Lemma 4.3.17 we have that

Pr {Q > qu +m2Amax + k} ≤ ρ

⌈
m2Amax+k

2Amax

⌉
u Pr {Q > qu} ,

≤ ρ

⌈
m2Amax
2Amax

⌉
u Pr {Q > qu} , since ρu < 1,

= Pr {Q > qu} ρmu .

Substituting in (4.13), we have that

∞∑
q=qu

Pr {Q > q} ≤ 2AmaxPr {Q > qu}
∞∑
m=0

ρmu ,

= 2AmaxPr {Q > qu}
1

1− ρu
. (4.14)

Now we obtain an upper bound on Pr {Q > qu}. We note that

C(γ)− c(λ) =
∑
q>qu

π(q) [c(s(q))− l(s(q))] .

Then

mu

∑
q>qu

π(q) [s(q)− su] ≤ C(γ)− c(λ) = V,

where mu is the tangent of the angle made by the line through (c(su + 1), su + 1) and (c(su), su)

with l(s). We note that for q > qu, s(q)− su ≥ 1. Therefore

∑
q>qu

π(q) = Pr {Q > qu} ≤
V

mu
. (4.15)

Using the above upper bound in (4.14), we obtain that

∞∑
q=qu

Pr {Q > q} ≤ 2Amax
V

mu(1− ρu)
.

From (4.12), we also obtain that

quPr {Q > qu} ≤
2AmaxV

mu
log 1

ρu

[
m(Smax − su)

V

]
.
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Then we have that

Q(γ) ≥ σ2

2(su − λ)
+
λ

2
− Smax − su

su − λ

(
2AmaxV

mu
log 1

ρu

[
m(Smax − su)

V

]
+ 2Amax

V

mu(1− ρu)

)
.

Thus, for the sequence of policies γk, with Vk ↓ 0, we obtain that

Q(γk) =
σ2

2(su − λ)
+
λ

2
−O

(
Vk log

(
1

Vk

))
.

Remark 4.3.20. We note that the above asymptotic lower bounds can be obtained for admissible

policies, even for general holding costs. Suppose, the holding cost is h(q) in state q, instead of the

queue length q. We assume that h(q) is a strictly increasing function of q. Then, instead of Q(γ)

for an admissible policy, we are interested in the average holding cost H(γ) =
∑∞

q=0 π(q)h(q).

We assume that for admissible policies H(γ) is finite. We note that asymptotic lower bounds on

H(γ) can be obtained quite easily, from the above results. Consider the random variable h(Q) for

a policy γ. Then we obtain a lower bound h
2 on H(γ), where h is the largest number such that

Pr
{
h(Q) ≤ h

}
≤ 1

2 . If the inverse function h−1 of h exists, then we have that h is the largest

number such that Pr
{
Q ≤ h−1(h)

}
≤ 1

2 . We note that we have already obtained lower bounds

ql to q, where q is the largest integer such that Pr {Q ≤ q)} ≤ 1
2 . Therefore, we obtain that

H(γ) ≥ h(ql)
2 .

4.3.5 Asymptotic characterization of admissible policies for TRADEOFF

We consider a sequence of cc,k ↓ c(λ) for TRADEOFF. Let γk be any sequence of feasible policies

for the sequence cc,k. In this section, we obtain an asymptotic characterization of γk. Our approach

is similar to that in Sections 2.3.3 and 3.2.3 for the state dependent M/M/1 model. However, we

are unable to obtain asymptotic upper bounds. Since, only the asymptotic upper bounds depended

on the order-optimality property, the bounds that we derive here hold for any sequence of feasible

policies for the sequence cc,k.

We first obtain the bounds Pl {A} and Pu {A} as in Section 3.2.3. We note that the elements

of sets A are average service rates ES(q). Let A ⊆ [0, sl − εV ]
⋃

[su + εV , Smax]. Let QA =

{q : ES(q) ∈ AV }. Proceeding as in the proof of Lemma 4.3.8, we have that Pr {Q ∈ QA} ≤
Pu(QA) = V

mεV
. Then, we have that

Pu(QA) =


V 1−δ

ma , if εV = aV δ, 0 ≤ δ < 1,

1
ma , if εV = aV.

(4.16)

Let A = [sl − εV , su + εV ]. Let QA be defined as before. Then using (4.16), we have that
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Pr {Q ∈ QA} ≥ Pl(QA), where

Pl(QA) =

1− V 1−δ

ma , if εV = aV δ, 0 ≤ δ < 1,

1− 1
ma , if εV = aV.

(4.17)

We note that the above two bounds hold for cases 2 and 3.

Consider the sets A1 = [0, sl− εV ], A2 = (sl− εV , s̃], A3 = (s̃, su+ εV ], and A4 = [su+ εV , Smax].

From (4.16) we have that

π(A2) + π(A3) = 1− π(A1)− π(A4) ≥ 1− V

mεV
, and

(sl − εV )π(A2) + s̃π(A3) ≤ λ.

We have that

π(A3) ≤ λ− (sl − εV )π(A2)

s̃
, and,

π(A2) +
λ− (sl − εV )π(A2)

s̃
≥ 1− V

mεV
.

Therefore,

π(A2)

[
s̃− (sl − εV )

s̃

]
≥ s̃− λ

s̃
− V

mεV
,

π(A2) ≥ s̃− λ
s̃− (sl − εV )

− s̃V

mεV (s̃− (sl − εV ))
.

The above lower bound can be non-negative only if s̃ > λ. In the following, we set s̃ = λ + ε′V ,

where λ+ε′V is assumed to be less than or equal to su+εV and λ+εV for cases 2 and 3 respectively.

Then we have that,

π(A2) ≥
ε′V

λ− sl + ε′V + εV
− s̃V

mεV
(
λ− sl + ε′V + εV

) . (4.18)

We have the following result.

Lemma 4.3.21. For any sequence of admissible policies γk, with C(γk) − c(λ) = Vk ↓ 0, and

QA = {q : ES(q) ∈ A} for a A ⊆ [0, Smax], we have that

|QA| =


Ω
(

log
(

1
Vk

))
, for Case 2, if A = [sl − aV δ, su + aV δ], 0 ≤ δ < 1, a > 0,

Ω
(

log
(

1
Vk

))
, for Case 2, if A = [sl − aV δ, λ+ ε], 0 ≤ δ < 1, a > 0, ε > 0,

Ω
(

1
Vk

)
, for Case 3, if A = [0, λ+ aV ], a > 0.

Proof. Consider a particular policy γ in the above sequence with C(γ) − c(λ) = V . Let us first
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consider the case where A = [sl − εV , su + εV ]. From (4.17), we have that Pl(QA) ≥ 1− V 1−δ

ma , by

choosing εV = aV δ, 0 ≤ δ < 1.

We proceed as follows for Case 2. Let qs
∆
= sup {q : ES(q) < sl − εV }. Then, we have that

Pr {Q ≤ qs} ≤ V 1−δ

ma . Suppose ql is the largest integer such that

Pr {Q ≤ qs}
ql∑
q=1

ρk

ρd
≤ 1− V 1−δ

ma
,

where ρ and ρd are as in Lemma 4.3.5, then ql ≤ |QAV |. We then obtain that ql = Ω
(
log
(

1
V

))
.

Now we consider A of the form [sl − εV , s̃], for s̃ = λ + ε′V ≤ su + εV as in (4.18). For this A,

since the asymptotic lower bound on |QA| is Ω
(

1
V

)
and is obtained as in the previous case, we do

not present the derivation here. For Case 2, we choose εV = aV δ, 0 ≤ δ < 1, and ε′V = ε, where

ε > 0 is such that λ+ ε < su. Then from (4.18), we have that

π(A) ≥ ε′

λ− sl + ε′ + aV δ
− s̃V 1−δ

m (λ− sl + ε+ aV δ)
. (4.19)

Now proceeding as for the case when A = [sl − εV , su + εV ] above, we obtain that for A =

[sl − εV , λ+ ε], |QA| = Ω
(
log
(

1
V

))
.

We now consider Case 3. For Case 3, we consider A to be [0, su + εV ] rather than [sl −
εV , su + εV ]. We also choose εV to be aV . Then, we have that Pl(QA) ≥ 1 − 1

ma . Let

qd
∆
= sup {q : ES(q) ≤ su + εV }. We note that Pr {Q ≤ qd − 1} = 1 − Pr {Q ≥ qd}. From

TAIL-PROB-STATE-DEP-2 Lemma 4.3.7, we have that

Pr {Q ≤ qd − 1} ≤
(

1−
(

εa
εa + εV

)qd)
−
(

1−
(

εa
εa + εV

)qd) 1

εV

∑
q=qd+1

[λ− ES(q)]π(q)

 .
Then proceeding as in the proof of Lemma 4.3.13, we have that qd = Ω

(
1
V

)
. Therefore, |QA| =

Ω
(

1
V

)
.

4.3.6 An asymptotic lower bound for the tradeoff problem (4.4)

In this section, using the asymptotic results for TRADEOFF, derived in Section 4.3.4, we derive

lower bounds for the optimal value of (4.4) for a set of cc, via the Lagrange dual of (4.4). We note

that the same approach applies to the tradeoff problems in Chapter 5. The asymptotic results for

(4.4) are derived only for cases 2 and 3.

For (4.4), from Section 4.2.1, we have that there exists a stationary optimal policy. Therefore, the
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optimal value of (4.4) is equal to that of

minimize
γ∈Γs

Q(γ),

such that C(γ) ≤ cc. (4.20)

However, in this chapter, the problem that we have considered is

minimize
γ∈Γa

Q(γ),

such that C(γ) ≤ cc. (4.21)

We note that the optimal value of (4.20) is lower bounded by the optimal value of its Lagrange

dual:

max
β≥0

[
min
γ∈Γs

[
Q(γ) + β

(
C(γ)− cc

)]]
. (4.22)

From Lemma 4.3.1, we have that for any β ≥ 0, there exists an admissible policy γ∗β which achieves

the minimum for the problem minγ∈Γs

[
Q(γ) + β

(
C(γ)− cc

)]
. In the following, we show that an

asymptotic lower bound to the solution of (4.20) can be obtained using (4.22) from the asymptotic

behaviour of the optimal solution of (4.21), for certain sequences of cc as cc ↓ c(λ).

We note that for any sequence β ↑ ∞, it can be shown that C(γ∗β) ↓ c(λ). For the following

analysis, we also consider the MDP:

min
γ∈Γs

[
Q(γ) + β

(
C(γ)− c(λ)

)]
. (4.23)

We note that for a β ≥ 0, γ∗β is optimal for both (4.22) and (4.23). We have the following result.

Proposition 4.3.22. Suppose γk is any sequence of policies such that C(γk)− c(λ) = Vk ↓ 0 and

Q(γk) =

O
(

log
(

1
Vk

))
, for Case 2,

O
(

1
Vk

)
, for Case 3.

Let cc,k be any sequence such that

cc,k =

Θ
(
C(γk)− c(λ)

)
, for Case 2,

Θ
((
C(γk)− c(λ)

)2)
, for Case 3.
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Then, for the tradeoff problem (4.20), for the sequence cc,k ↓ c(λ) we have that

Q∗(cc,k) =

Ω
(

log
(

1
cc,k−c(λ)

))
, for Case 2,

Ω
(

1
cc,k−c(λ)

)
, for Case 3.

Proof. We consider Case 2 first. Let γk be any sequence of policies (admissible or otherwise),

which is such that C(γk) − c(λ) = Vk ↓ 0 and Q(γk) = O
(

log
(

1
Vk

))
. From Lemma 4.3.10,

we note that at least one such sequence exists. Let β̃k = 1

(C(γk)−c(λ))
. We show that C(γ∗

β̃k
) −

c(λ) = O
(

1
β̃δk

)
, where 0 ≤ δ < 1. We proceed by contradiction. Suppose C(γ∗

β̃k
) − c(λ) is

not O
(

1
β̃δk

)
. Then C(γ∗

β̃k
) − c(λ) is ω

(
1
β̃δk

)
. Therefore, the optimal value of (4.23), Q(γ∗

β̃k
) +

β̃k

(
C(γ∗

β̃k
)− c(λ)

)
= ω

(
β̃1−δ
k

)
. However, we note that the sequence of policies γk is such that

Q(γk) + β̃k(C(γk)− c(λ)) = O
(

log
(
β̃k

))
, which contradicts the optimality of the sequence γ∗

β̃k
.

Therefore, C(γ∗
β̃k

)− c(λ) = O
(

1
β̃δk

)
.

Consider a sequence of cc,k ↓ c(λ) for (4.20). Suppose cc,k is such that cc,k−c(λ) = Θ
(
C(γk)− c(λ)

)
.

Then (4.22) can be bounded below as

max
β≥0

min
γ∈Γs

[
Q(γ) + β

(
C(γ)− cc,k

)]
≥ Q(γ∗

β̃k
) + β̃k

(
C(γ∗

β̃k
)− c(λ)

)
− β̃k (cc,k − c(λ)) .

We have that β̃k

(
C(γ∗

β̃k
)− c(λ)

)
≥ 0. Since cc,k − c(λ) = O

(
C(γk)− c(λ)

)
, we have that

β̃k (cc,k − c(λ)) = O(1). Furthermore, since C(γ∗
β̃k

) − c(λ) = O
(

1
β̃δk

)
, we have that Q(γ∗

β̃k
) =

Ω
(

log
(
β̃k

))
. Since cc,k − c(λ) is also Ω

(
C(γk)− c(λ)

)
we have that

Q(γ∗
β̃k

) + β̃k

(
C(γ∗

β̃k
)− c(λ)

)
− β̃k (cc,k − c(λ)) = Ω

(
log

(
1

cc,k − c(λ)

))
,

which provides an asymptotic lower bound for (4.20).

We now consider Case 3. Let γk be any sequence of policies, which is such that C(γk) − c(λ) =

Vk ↓ 0 and Q(γk) = O
(

1
Vk

)
. From Lemma 4.3.4, we note that at least one such sequence exists.

Let β̃k = 1

(C(γk)−c(λ))
2 . We show that C(γ∗

β̃k
)− c(λ) = O

(
1√
β̃k

)
. We proceed by assuming that

C(γ∗
β̃k

)− c(λ) is not O
(

1√
β̃k

)
. Then C(γ∗

β̃k
)− c(λ) is ω

(
1√
β̃k

)
. Then we have that the optimal

value of (4.23), Q(γ∗
β̃k

) + β̃k

(
C(γ∗

β̃k
)− c(λ)

)
= ω

(√
β̃k

)
. We note that the sequence of policies

γk is such that Q(γk) + β̃k(C(γk) − c(λ)) = O
(√

β̃k

)
, which contradicts the optimality of the

sequence γ∗
β̃k

. Therefore, C(γ∗
β̃k

)− c(λ) = O
(

1√
β̃k

)
.
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Then, proceeding as in Case 2, for any sequence of cc,k such that cc,k−c(λ) = Θ
((
C(γk)− c(λ)

)2)
,

we have that for Case 3, the optimal value of (4.20) is Ω
(

1
cc,k−c(λ)

)
.

We note that since for c′c,k ∈ Ou, there exists an admissible optimal policy for (4.4), the asymptotic

lower bounds obtained in Lemma 4.3.8 and Lemma 4.3.13 apply directly. The above Lagrange

dual approach shows that the asymptotic lower bounds also apply to (4.4) for the sequences cc,k

considered above. Since the sequence of admissible optimal policies for the sequence c′c,k satisfy the

properties required for γk stated in the above proposition, we note that the set of cc,k for which the

above lower bound holds also contains Ou. However, we are unable to show that for any sequence

cc,k ↓ c(λ) the asymptotic lower bounds in the above proposition hold.

4.3.7 Asymptotic lower bounds for ergodic (A[m],m ≥ 1)

We note that when the arrival process (A[m],m ≥ 1) is an ergodic batch arrival process, the

optimal policy for the tradeoff problem (4.4) may not be stationary. But in this section, we consider

the set of policies Γs, which are such that the batch size S(q) used for service in slot m is a

function only of the queue length Q[m− 1] = q, and is independent of anything else. We note that

S(Q[m− 1]) could be a randomized function of Q[m− 1]. The asymptotic lower bound presented

here is significant, in that it complements the asymptotic upper bound obtained for Markov batch

arrival processes in [45, Section 4.9] and [30].

We assume that (A[m]) is ergodic, so that almost surely

lim
M→∞

1

M

M∑
m=1

A[m] = EA[1] = λ,

and λ < Smax, where Smax is the largest batch size which can be served, as defined before. We

also assume that the arrival process (A[m]) is such that

NA1 : Let σ[m− 1] = (Q[0] = q0, A[1] = a1, Q[1] = q1, A[2] = a2, . . . , A[m− 1] = am−1, Q[m−
1] = qm−1). We assume that

inf
m∈Z+

min
{a1,...,am−1}
{q1,...,qm−1}

Pr {A[m] = 0|σ[m− 1]} = νa > 0.

We restrict to policies γ ∈ Γs for which the following limits exist

lim
m→∞

Pr {Q[m] = q|Q[0] = q0} = π(q),∀q ∈ Z+, (4.24)

with
∑∞

q=0 π(q) = 1. We note that for policies γ ∈ Γs for which the above limits exist, also have
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well defined πs(s), ∀s ∈ {0, . . . , Smax}, where

πs(s) = lim
M→∞

1

M

M∑
m=1

Pr {S[m] = s|Q[0] = q0} . (4.25)

For such a policy γ, the average service cost is C(γ) =
∑Smax

s=0 πs(s)c(s) and the average queue

length is Q(γ) is defined as
∑∞

q=0 π(q)q.

To obtain an asymptotic characterization of the tradeoff, we again restrict to a class Γa of admissible

policies. However, we use a weaker definition5 of admissible policies, compared with the definition

in Section 4.3.2. A policy γ ∈ Γs is admissible if:

NG1 : the limits in (4.24) exist for γ,

NG2 : γ is mean rate stable (see [45]), i.e.,
∑Smax

s=0 πs(s)s = λ,

NG3 : the average service rate ES(q) is a non-decreasing function of q for γ.

Then for any admissible policy γ, we have that C(γ) ≥ c(λ), as before, by applying Jensen’s

inequality.

Let UV be a random variable with support on {0, . . . , Smax} and EUV = λ+V . Let (UV [m],m ≥ 1)

be an IID sequence with UV [m] ∼ UV . Consider a particular policy γV for a V > 0, which

chooses S[m] = min(Q[m − 1], UV [m]). Using [34, Lemma 1] we have that the limit π(q) =

limm→∞ Pr {Q[m] = q} exists. We note that then the evolution of the queue can be written as

Q[m] = max

(
Q[m− 1]− UV [m], 0

)
+A[m], for m ≥ 1, with Q[0] = q0.

Let Q′[1] = max(q0 − UV [1], 0), and

Q′[m] = max

(
Q′[m− 1] +A[m− 1]− UV [m], 0

)
, for m ≥ 2.

We note that Q[m] = Q′[m] + A[m],m ≥ 1. Since the sequence of random variables ζ[m] =

A[m]−UV [m+ 1],m ≥ 1 is ergodic and Eζ[1] = λ− (λ+ V ) < 0, from [12, Chapter 1, Theorem

7] we have that limm→∞ Pr {Q′[m] <∞} = 1 and limm→∞ Pr {Q′[m] = q} = π′(q) exists. Since

A[1] ≤ Amax we have that limm→∞ Pr {Q[m] <∞} = 1. Thus γV satisfies properties NG1 and

NG2. We also note that by construction γV satisfies property NG3 and hence γV is admissible. We

note that C(γV ) ≤ Ec(UV [1]). Now consider the sequence of admissible policies γV for a sequence

5The set of admissible policies in this section contains the set of admissible policies defined in the previous sections.
This shows that the development of the log

(
1
V

)
asymptotic lower bound can be obtained under weaker assumptions

than what was assumed in the previous sections.
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V ↓ 0. Then it is always possible to choose 6 the distribution of UV such that C(γV ) = c(λ)+O(V )

as V ↓ 0. Therefore, as before, c(λ) = infγ∈Γa C(γ).

We note that c(λ) is piecewise linear and three cases arise depending on the value of λ, as shown

in Section 4.3.3. We define sl, su, and the line l(s) as in Section 4.3.3. For Case 1, we do not have

a tight asymptotic lower bound. We now obtain an asymptotic lower bound which applies to Cases

2 and 3. We note that the bound is obtained by generalizing the proofs of Lemmas 4.3.5 and 4.3.8.

We also note that this asymptotic lower bound holds even if (A[m]) is just stationary rather than

ergodic. Ergodicity of (A[m]) was required for proving that c(λ) = infγ∈Γa C(γ).

For some positive ε < sl, let qs
∆
= inf {q : ES(q) ≥ sl − ε}. We note that the proof of the following

asymptotic lower bound also follows the methodology summarized in Section 4.1.1, except that the

geometric bound on the stationary probability distribution for the ergodic process Q[m] is obtained

from the assumptions NA1 and NG3.

Lemma 4.3.23. For an ergodic arrival process (A[m],m ≥ 1), satisfying NA1, and for any sequence

of admissible policies γk (satisfying NG1, NG2, and NG3), with C(γk) − c(λ) = Vk ↓ 0, we have

that Q(γk) = Ω
(

log
(

1
Vk

))
, for Cases 2 and 3.

Proof. For a particular policy γ in the above sequence with Vk = V , as in the proof of Lemma

4.3.8, we have that

∑
q

π(q)

[
c(ES(q))− l(ES(q))

]
≤ V,

since c(s) is convex and l(s) is linear. Therefore,

qs−1∑
q=0

π(q) ≤ V

m1ε
,

where m1 is the tangent of the angle between (i) the line passing through (sl − 1, c(sl − 1)) and

(sl, c(sl)) and (ii) l(s).

As in the proof of Lemma 4.3.5, we have that Pr {S(q) > 0} ≥ sl−ε
Smax

, ∀q ≥ qs, since for q ≥ qs,

ES(q) ≥ sl − ε. Now we relate the stationary probability π(q), q ≥ qs to
∑qs−1

q=0 π(q). We have

that for a q ≥ qs and for every m ≥ 0

Pr {Q[m+ 1] < q|Q[0] = q0} = Pr {Q[m]− S(Q[m]) +A[m+ 1] < q|Q[0] = q0} ,

6For small enough V , a distribution for UV that gives mass to either (i) λ and λ+ 1, if λ is an integer or (ii) bλc
and dλe, if λ is not an integer, can be chosen such that EUV = λ + V and Ec(UV ) = c(λ) + mV , where m is the
slope of the line joining (λ, c(λ)) and (λ+ 1, c(λ+ 1)) for (i) or the line joining (bλc , c(bλc)) and (dλe , c(dλe)) for
(ii).
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which can be written as

= ES[1],Q[1],...,Q[m−1],S[m]

[
Pr

{
Q[m]− S(Q[m]) +A[m+ 1] < q

∣∣∣∣
Q[0] = q0, S[1], Q[1], . . . , Q[m− 1], S[m]

}]
,

which is

≥ ES[1],Q[1],...,Q[m−1],S[m]

[
Pr {Q[m] = q|Q[0] = q0, S[1], Q[1], . . . , Q[m− 1], S[m]} ×

Pr {S(Q[m]) > 0|Q[0] = q0, S[1], Q[1], . . . , Q[m− 1], S[m], Q[m] = q} ×

Pr {A[m+ 1] = 0|Q[0] = q0, S[1], Q[1], . . . , Q[m− 1], S[m], Q[m] = q, {S(Q[m]) > 0}}
]
.

We note that the batch size S(Q[m]) is chosen independently of the history of the queue length

evolution. We also note that the evolution (Q[0] = q0, S[1], Q[1], . . . , Q[m−1], S[m], Q[m] = q) is

equivalent to the evolution σ[m] = (q0, A[1], Q[1], A[2], Q[2], . . . , A[m], Q[m] = q). Furthermore,

A[m+ 1] is independent of the batch size S[m+ 1] = S(Q[m]) given Q[m]. Therefore, using NA1,

the above lower bound can be written as

= ES[1],Q[1],...,Q[m−1],S[m]

[
Pr {Q[m] = q|Q[0] = q0, Q[1], S[1], . . . , Q[m− 1], S[m]} ×

Pr {S(Q[m]) > 0|Q[m] = q} × Pr {A[m+ 1] = 0|σ[m]}
]
.

Then using the property NA1 and the above lower bound on Pr {S(q) > 0} for q ≥ qs we have

that Pr {Q[m+ 1] < q|Q[0] = q0}

≥ sl − ε
Smax

νaES[1],Q[1],...,Q[m−1],S[m]

[
Pr {Q[m] = q|Q[0] = q0, Q[1], S[1], . . . , Q[m− 1], S[m]}

]
,

= Pr {Q[m] = q|Q[0] = q0}
sl − ε
Smax

νa.

Defining ρd = sl−ε
Smax

νa and ρ = 1 + 1
ρd

, and proceeding as in the proof of Lemma 4.3.5, we have

that for any non-negative k, q = qs + k, and for every m ≥ 0,

Pr {Q[m] = q|Q[0] = q0} ≤ Pr {Q[m+ 1] < qs|Q[0] = q0}
ρk

ρd
.

Therefore,

1

M

M−1∑
m=0

Pr {Q[m] = q|Q[0] = q0} ≤
ρk

ρd

[
1

M

M−1∑
m=0

Pr {Q[m] < qs|Q[0] = q0}+

Pr {Q[M ] < qs|Q[0] = q0} − Pr {Q[0] < qs|Q[0] = q0}
M

]
.
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Then as M →∞, since γ is admissible, we have that

π(q) ≤ ρk

ρd

qs−1∑
q=0

π(q).

Proceeding similarly as in the proof of Lemma 4.3.5 (from (4.31)), we can show that

Q(γ) ≥ 1

2

[
logρ

[
1

2
∑qs−1

q=0 π(q)

]
− 1

]
.

Since
∑qs−1

q=0 π(q) ≤ V
m1ε

, we have that for the sequence of policies γk, Q(γk) = Ω
(

log
(

1
Vk

))
.

We note that the above asymptotic lower bound is not tight for Case 3 for IID (A[m]) since we

have a Ω
(

1
Vk

)
lower bound on Q(γk).

In [45, Theorem 4.12] and [30], it has been shown that if (A[m],m ≥ 1) is Markov, i.e.,

Pr {A[m+ 1] = am+1|A[m] = am, . . . , A[1] = a1} = Pr {A[m+ 1] = am+1|A[m] = am} ,

then for a sequence of Quadratic Lyapunov Algorithm (QLA) policies, parametrized by a sequence

Vk ↓ 0, the average queue length is O
(

1
Vk

)
for an average service cost Vk more than c(λ).

We note that the QLA algorithm chooses a deterministic batch size s(q) for service based on the

current queue length only (unlike, say TOCA, for which the batch size is chosen as a function of

other auxiliary variables also). Therefore, the QLA algorithm falls in the restricted class of admissible

policies considered in this section. We note that the batch sizes are chosen deterministically,

therefore we have that

Pr {A[m+ 1] = am+1|A[m] = am, . . . , A[1] = a1, Q[0] = q0} =

Pr {A[m+ 1] = am+1|Q[m] = qm, A[m] = am, Q[m− 1] = qm−1, . . . , A[1] = a1, Q[0] = q0} ,

for the given policy, for (qn, 0 ≤ n ≤ m), such that qn+1 = qn − s(qn) + an+1. Then we note that

the above asymptotic lower bound applies, for the QLA algorithm, under the assumption

Pr {A[m] = am|A[1] = a1, A[2] = a2, . . . , A[m− 1] = am−1, Q[0] = q0} =

Pr {A[m] = am|A[1] = a1, A[2] = a2, . . . , A[m− 1] = am−1} .
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4.4 Asymptotic bounds for R-model

As for the integer valued case, the tradeoff problem is to obtain Q∗(cc, q0), which is the optimal

value of

minimize
γ∈Γ

Q(γ, q0) such that C(γ, q0) ≤ cc,

where cc ≥ 0 is the average service cost constraint.

We recall that the above problem can again be formulated as a constrained Markov decision problem

over the class of policies Γ. However, since the R-model is usually used as an approximation for the

I-model, we analyse the tradeoff problem only for a restricted class of stationary admissible policies,

where the definition of this class of admissible policies is motivated by the definition in Section

4.1.2. We assume that λ < Smax as before.

Stability : A policy γ ∈ Γs is said to be stable if : a) the Markov chain Q[m] under γ is positive

Harris recurrent with stationary distribution πγ on the recurrence class corresponding to q0, and b)

Q(γ, q0) <∞.

Admissibility : In the following we restrict ourselves to the class of admissible policies Γa which is

defined below. A policy γ is called admissible if:

RG1 : it is stable,

RG2 : it induces an aperiodic, irreducible Harris Markov chain Q[m], and,

RG3 : the average service rate at a queue length q, ES(q) is non-decreasing in q.

We note that the properties RG1 and RG2 are similar to the properties of admissible policies used

in Berry and Gallager [7]. The additional property RG3 is motivated by the monotonicity property

derived in Agarwal et al. [1] as well as the monotonic non-decreasing property of any stationary

deterministic optimal policy derived for the integer valued case in Section 4.1.2. We note that as

in Section 4.1.2, for γ ∈ Γa, the average queue length and average service cost are independent of

q0 and are therefore denoted by Q(γ) and C(γ) respectively. We also note that Q(γ) = EπγQ and

C(γ) = EπγcR(S(Q)).

We have that the TRADEOFF problem, for the R-model, is to obtain Q∗(cc) which is the optimal

value of

minimize
γ∈Γa

Q(γ), such that C(γ) ≤ cc.

From the convexity of cR(s) and Jensen’s inequality, we obtain that for any γ ∈ Γa, C(γ) ≥ cR(λ).

Similar to the proof of Lemma 4.3.4, it can be shown that there exists a sequence of policies γε ∈ Γa
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such that C(γε) ↓ cR(λ). Therefore, we obtain that infγ∈Γa C(γ) = cR(λ). In the next section, we

obtain an asymptotic characterization of Q∗(cc) in the asymptotic regime < as cc ↓ cR(λ).

4.4.1 Asymptotic lower bound

We note that this problem can be considered as a special case of the tradeoff problem considered

by Berry and Gallager [7], with the fade state taking only a single value. The contribution in this

section is a step towards an alternative explanation for the Berry-Gallager lower bound, but with

the extra property RG3 for an admissible policy. We note that asymptotic bounds for any order-

optimal policy can be obtained under the additional assumption RG3. In Chapter 5, we present

a lower bound for multiple fade states. As in [7] and as for the integer valued service case, we

obtain lower bounds on the minimum average queue length for any sequence of admissible policies

γk such that C(γk)− cR(λ) = Vk ↓ 0. The asymptotic lower bound is obtained via a lower bound

on the stationary probability for a Markov chain which evolves on R+. The lower bound is similar

to Lemma 4.3.7-TAIL-PROB-STATE-DEP-1 but for a Markov chain with state space R+.

Lemma 4.4.1. Let (Q[m]) be the queue length evolution process for an admissible policy γ. Let

εa and δa be as in assumption RA1. Suppose there exists a qd such that

∀q ∈ [0, qd],E [Q[m+ 1]−Q[m]|Q[m] = q] ≥ −d,

where d is positive. Then for any q1, k ≥ 0, ∆ > 0, δ > 0, ∆ + δ < δa, and 0 ≤ q1 + k∆ ≤ qd, we

have

Pr {Q ≥ q1 + k∆} ≥
(

δεa
δεa + d

)k
Pr {Q ≥ q1}+

(
1−

(
δεa

δεa + d

)k)[
Pr {Q ≥ qd} −

1

d

∫ ∞
qd

(ES(q)− λ)dπ(q)

]
.

The proof is presented in Appendix 4.I. We note that the development of the above lower bound

on Pr {Q ≥ q} is an extension of the geometric lower bound on stationary probability for countable

space DTMCs available in Bertsimas et al. [8] and [9], to the case of DTMCs on R+ with state

dependent drift.

Using the above result, we derive the following asymptotic lower bound. Similar to assumption C2

in Chapter 3 and as in [7], we assume that the second derivative of cR(s) is positive at s = λ.

Proposition 4.4.2. For any sequence of policies γk ∈ Γa with C(γk)− cR(λ) = Vk ↓ 0, Q(γk) =

Ω
(

1√
Vk

)
.

Proof. Consider a particular policy γ in the sequence γk with Vk = V . Let qd = sup {q : ES(q) ≤ λ+ εV },
where εV will be chosen later. Suppose qd is finite. From the admissibility of γ, we have that
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∀q ∈ [0, qd],ES(q) ≤ λ+ εV . Using d = εV in Lemma 4.4.1, we have for a q̄ = k∆ ≤ qd, k ≥ 0,

Pr {Q ≥ q̄} ≥
(

δεa
δεa + εV

)k
+ 1−

(
δεa

δεa + εV

)k [
Pr {Q ≥ qd} −

1

εV

∫ ∞
qd

(ES(q)− λ)dπ(q)

]
.

Or we have that

Pr {Q < q̄} ≤

(
1−

(
δεa

δεa + εV

)k)[
1 +

1

εV

∫ ∞
qd

(ES(q)− λ)dπ(q)− Pr {Q ≥ qd}
]
. (4.26)

We note that for q ∈ [qd,∞), ES(q)− λ ≥ εV . For brevity, we denote 1
εV

∫∞
qd

(ES(q)− λ)dπ(q) by

Dt. Now we note that for the policy γ, EπcR(S(Q))−cR(λ) = V . Define l(s) as the tangent to the

curve cR(s) at (λ, cR(λ)). Then we have that EπES|Q[cR(S(Q))− l(S(Q))] = V . Now as cR(s) is

convex and l(s) is linear, using Jensen’s inequality we have that Eπ[cR(ES(Q))− l(ES(Q))] ≤ V .

As in [7, step (41)], cR(s)−l(s) = G(s−λ) where G(x) is a strictly convex function with G(0) = 0,

G′(0) = 0, and G′′(0) > 0. Thus we have that EπG(ES(Q) − λ) ≤ V . Using the sequence of

steps (45), (46), (47), and (48) of Berry and Gallager [7], we obtain that

[∫ ∞
qd

(ES(q)− λ)dπ(q)

]2

≤ V

a1
,

where a1 > 0 is such that G(x) ≥ a1x
2 (see Proposition 3.A.1), for x ∈ [−λ, Smax − λ]. We note

that then Dt ≤ 1
εV

√
V
a1

. Choosing εV = 4
√

V
a1

we obtain that Dt ≤ 1
4 .

We note that Q(γ) ≥ q̄
2 , where q̄ = sup

{
q : Pr {Q < q} ≤ 1

2

}
. Using the upper bound (4.26) and

non-negativity of Pr {Q ≥ qd}, if q̄1 = k1∆ where k1 is the largest integer such that(
1−

(
δεa

δεa + εV

)k1
)

[1 +Dt] ≤
1

2
,

then q̄1 ≤ q̄. Therefore, k1 is such that

1 + 2Dt

2 + 2Dt
≤
(

δεa
δεa + εV

)k1

,(
1 +

εV
δεa

)k1

≤ 2 + 2Dt

1 + 2Dt

Let k2 be the largest integer such that(
1 +

εV
δεa

)k2

≤ 2

1 + 2Dt
. (4.27)

Then k2 ≤ k1. We note that even if qd is infinite, k2∆ is a lower bound to q̄, since Dt is 0 in that

case. The rest of the proof holds irrespective of whether qd is finite or infinite.

152



Then, from (4.27) and using the upper bound 1
4 on Dt, if k3 is the largest integer such that

(
1 +

εV
δεa

)k3

≤ 2

1 + 1
2

,

then k3 ≤ k2. We obtain that k3 is at least

log(
1+

εV
δεa

)(4

3

)
− 1.

Since Q(γ) ≥ q̄
2 ≥

∆k1
2 ≥ ∆k2

2 ≥ ∆k3
2 , we have that Q(γ) ≥ ∆

2

(
log(

1+
εV
δεa

) (4
3

)
− 1

)
. Since

log
(

1 + εV
δεa

)
= Θ

(√
V
)

, we have that for the sequence γk as Vk ↓ 0, Q(γk) = Ω
(

1√
Vk

)
.

We note that the problem considered here is a special case of the Berry-Gallager problem (with

a single fade state) with admissible policies. The upper bounds for the average queue length and

average service cost for the TOCA policy from Neely [43], can be used to obtain asymptotic upper

bounds for this problem. However, we note that these bounds hold only for the problem (4.4), since

the sequence of TOCA policies is not admissible. Therefore, as in Lemma 4.3.10, we present a

sequence of admissible policies which achieve the above asymptotic growth rate up to a logarithmic

factor.

Lemma 4.4.3. Let a policy γ be defined as follows. At a queue length q, γ serves a batch size

min(q, s̃(q)), where

s̃(q) =


λ− εV , for 0 ≤ q ≤ qv,

λ+ εV , for qv < q ≤ 2qv,

λ+ ε, for 2qv < q.

where qv > 0 and λ+ε ≤ Smax. We obtain a sequence of policies γk by choosing εV and qv from the

sequence εVk and qvk defined as follows. Let ωk =
√
Vk, where Vk ↓ 0. Let εVk = ωkA

2
maxe

ωAmax

and qvk = 1
ωk

log

(
1
ε3Vk

)
. Then we have that γk is a sequence of admissible policies, such that

C(γk)− c(λ) = O(Vk) and Q(γk) = O
(

1√
Vk

log
(

1
Vk

))
.

The proof of this lemma is given in Appendix 4.J and is motivated by and borrows ideas from the

proof of the asymptotic upper bound for TOCA policies in [43].

The TOCA policy is the same as that in Remark 4.3.12 except that for every m ≥ 1, we have that

the service batch size sTOCA[m] is chosen as

sTOCA[m] = min

(
arg min
s∈[0,Smax]

{
βc(s)−W [m]s

}
, Q[m− 1]

)
.

Then, from [43, Theorem 3 and Corollary 1], for the TOCA policy γ as above, for β > Smax,
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w = ε
δ2
max

e−
ε

δmax , ε = 1√
β

, and q̃ = 6
w log

(
1
ε

)
, we have that

Q(γ) = O
(√

β log (β)
)
,

C(γ) = c(λ) +O
(

1

β

)
.

For a sequence of policies γk, generated by choosing βk = 1
Vk

, for a sequence Vk ↓ 0, we have that

Q(γk) = O
(

1√
Vk

log
(

1
Vk

))
and C(γ) = c(λ) +O (Vk). The above bound is an upper bound for

the optimal solution of (4.4). Furthermore, we note that the above upper bound is an upper bound

to Q∗(cc,k) for a sequence cc,k as in Remark 4.3.12.

4.4.2 R-model with a piecewise linear cost function

We note that R-model with a strictly convex cR(s) is usually used as an approximation to I-model.

Usually, the function cR(s) coincides with c(s) for s ∈ {0, . . . , Smax}. But we find that there

are differences in the asymptotic behaviour of Q∗(cc) for I-model and R-model. We note that

cR(λ) ≤ c(λ),∀λ ∈ (0, Smax) and cR(λ) < c(λ) for λ 6∈ {0, . . . , Smax − 1}. Furthermore, R-

model suggests that Q∗(cc) increases to infinity for all λ ∈ (0, Smax) as cc ↓ cR(λ). However,

for Case 1, we see that Q∗(c(λ)) is finite (note that cR(λ) < c(λ) in this case). For Case 3,

with cR(λ) = c(λ) we have that Q∗(cc) = Ω

(
1√

cc−c(λ)

)
for the R-model, whereas for the I-

model Q∗(cc) = Ω
(

1
cc−c(λ)

)
. So R-model with a strictly convex cR(s) overestimates the behaviour

of Q∗(cc) for Case 1 and underestimates c(λ) and Q∗(cc) for Cases 2 and 3. In the following,

we briefly outline a method to show that a better approximation for I-model, is R-model with a

piecewise linear cR(s). The service cost function cR(s) is chosen as the lower convex envelope of

the service cost function c(s), s ∈ {0, . . . , Smax} for the I-model. With this choice of cR(s), the

asymptotic behaviour of I-model and its approximation, R-model, is the same.

We consider Case 2 first. We define sl, su, and the line l(s) as in Section 4.3.3. Consider any

sequence of admissible policies γk with C(γk)−cR(λ) = Vk ↓ 0. Then we have that EcR(ES(Q))−
cR(λ) ≤ Vk. For a particular policy γ in the sequence, 0 < ε < sl, and qs

∆
= sl − ε we have that

Pr {Q < qs} ≤ V
mε as in the proof of Lemma 4.3.8. We assume that Pr

{
A[1] ≤ ∆

2

}
= ε′a > 0,

for some 0 < ∆ < λ. We note that for the R-model, the queue evolution is on R+. We discretize

R+ into a countable number of intervals
(
[0, ∆

2 ), [∆
2 ,∆), . . .

)
. Then the proof of Lemma 4.3.8 can

be modified to show that Q(γk) = Ω
(

log
(

1
Vk

))
. A complete illustration of this proof technique

is given in Lemma 5.7.2.

For Case 3, we proceed as in the proof of Proposition 4.4.2 by defining qd to be sup {q : ES(q) ≤ λ+ εV },
where εV is a function of V to be chosen in the following. We recall thatDt

∆
= 1

εV

∫∞
qd

(ES(q)− λ) dπ(q).
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For the policy γ we have that

E [cR(ES(Q))− l(ES(Q))] ≤ V,∫ ∞
qd

(cR(ES(q))− l(ES(q))) dπ(q) ≤ V, or,

1

εV

∫ ∞
qd

(ES(q)− λ) dπ(q) ≤ V

mεV
,

where m is the tangent of angle made by the line passing through (λ−1, cR(λ−1)) and (λ, cR(λ))

with l(s). Now we choose εV = 4V
m to obtain that Dt ≤ 1

4 . Then we proceed as in the proof of

Proposition 4.4.2 to obtain that Q(γk) = Ω
(

1
Vk

)
.

We note that, by construction R-model has the service cost function cR(λ) = c(λ). Furthermore,

the asymptotic behaviour for R-model and I-model coincide for Cases 2 and 3. For Case 1, it can

be shown that Q(γu) is finite for R-model, so that Q∗(cR(λ)) is also finite. However, we do not

have asymptotic lower bounds for this case.

4.5 Conclusions

In this chapter, we have obtained an asymptotic characterization of the tradeoff curve Q∗(cc) in the

asymptotic regime < for a discrete time queueing model (I-model). This asymptotic characterization

has been obtained using the insights obtained from the analysis of INTERVAL-µCHOICE in Chapter

3. We also consider a real valued approximation (R-model) to I-model, and compare the asymptotic

results which are obtained for R-model with that for I-model.

For I-model we observe that the cost function c(s) as a function of the average service rate s

is piecewise linear. Then as for INTERVAL-µCHOICE-2-2, we have three cases. For Case 2,

motivated by INTERVAL-µCHOICE-2-2, we construct an upper bound to the stationary probability

distribution for the queue length which is geometrically increasing, which leads to Θ
(
log
(

1
V

))
asymptotic growth for Q∗(cc) as cc ↓ c(λ). We note that this geometric upper bound on the

stationary probability distribution can be obtained in general, even for Cases 1 and 3. However,

for Case 3, motivated by INTERVAL-µCHOICE-2-3, we expect that there is a set of queue lengths

with high probability for which the average drift ES(q)− λ ↓ 0 as V ↓ 0. We then expect that the

stationary probability of such queue lengths should be equal and O(V ). This intuition leads us to a

refined bound on the stationary probability of the queue length, obtained by extending the bounds

available in Bertsimas et al. [9], from which we obtained the Θ
(

1
V

)
asymptotic growth for Q∗(cc)

as V ↓ 0.

We note that Case 1 is similar to INTERVAL-µCHOICE-2-1, however we are unable to obtain

asymptotic lower bounds except for the restricted case where su = 1 and for the set of non-idling

admissible policies. A direct translation of the ideas from INTERVAL-µCHOICE-2-1 is not possible,
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since for the discrete time model we cannot obtain a dominating policy γ′ as for INTERVAL-

µCHOICE-2-1.

We note that R-model is similar to INTERVAL-µCHOICE-1, and as in Case 3 above, motivated by

the observation that for INTERVAL-µCHOICE-1, the stationary probability of queue lengths occur-

ring with high probability should be equal and O
(√

V
)

as V ↓ 0, we obtain a Ω
(

1√
V

)
asymptotic

lower bound on Q∗(cc). We comparing the asymptotic behaviour of Q∗(cc) between I-model and

R-model in their respective asymptotic regimes in Section 4.4.2. We observe that R-model with a

strictly convex cR(s) overestimates the behaviour of Q∗(cc) for Case 1 and underestimates c(λ) and

Q∗(cc) for Cases 2 and 3. Therefore, we conclude that a more appropriate real valued approximation

to I-model should have a cost function cR(s) chosen as the piecewise linear lower convex envelope

of c(s).

Since in our approach, we obtain bounds on the stationary probability of the queue length, we are

able to obtain asymptotic bounds on any sequence of order-optimal policies in the asymptotic regime

<. These bounds provide intuition for the design of buffer-partitioning policies and are presented

in Section 4.3.5. We also obtain that the minimum average queue length is Ω
(
log
(

1
V

))
for Cases

2 and 3, when the arrival process A[m] is ergodic.

In [45, Section 4.8], it is observed that the drift plus penalty algorithm idles for certain values of

the queue length. However, in Lemma 4.3.2, we have obtained that any optimal policy γ∗β should

be non-idling. Hence, the drift plus penalty algorithm has to be modified to be non-idling, for

the models considered in this chapter. So Lemma 4.3.2 can be thought of as providing theoretical

motivation for the place-holder method in [45, Section 4.8].

In the rest of the thesis, we use the above results to obtain asymptotic characterizations of some

resource tradeoff problems arising in point-to-point communication links.
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Appendices

4.A Proof of Lemma 4.3.1

Our approach is to verify the hypotheses of the single Theorem in Sennott [67] by showing that the

Assumptions (1), (2), and (3*) of Sennott [67] are satisfied. The assumptions in Sennott [67] are

as follows (note that the notation is as in [67]):

1. For every state i and discount factor α, the optimal expected total discount cost Vα(i) is

finite,

2. Let hα(i)
∆
= Vα(i) − Vα(0). There exists a non-negative N such that −N ≤ hα(i), for all

states i and discount factors α,

3. There exists non-negative Mi, such that hα(i) ≤ Mi, for every state i and discount factor

α. Let the transition probability under action a, from state i to j be Pi,j(a). Then for all i,∑
j Pi,j(a(i))Mj <∞ for an action a(i) feasible in state i.

Assumption (3*) assumes that in addition,
∑

j Pi,j(a)Mj < ∞, for all a feasible in state i. Let

C(i, a) be the single stage cost at state i, when action a is taken. If Assumptions (1), (2) and (3*)

hold, the Theorem [67] states that:

Theorem 4.A.1. There exists a constant g, which is independent of the state i, and a function

h(i) with −N ≤ h(i) ≤Mi, such that

g + h(i) = min
a

C(i, a) +
∑
j

Pi,j(a)h(j)

 , i ≥ 0.

A policy f that attains the minimum in the RHS of the above equation is average cost optimal,

with optimal average cost g.

For proving that the Assumptions (1) and (3) are satisfied we use [67, Proposition 5(i)] which states

that:

Proposition 4.A.2. Assume that the Markov decision process has a stationary policy f inducing

an irreducible, ergodic Markov chain satisfying
∑

i πiC(i, f(i)) <∞ ([67, Proposition 4, Condition

(i)]), where πi is the stationary probability for state i under f . Then Assumptions (1) and (3) hold.

Consider the stationary deterministic policy γf which uses a batch size s(q) = min(q, Smax) when

the queue length is q. Then, from assumption A2 we have that from any q > 0 the state 0 can be

reached, since Pr {A[1] = 0} > 0. From state 0, any state q > 0 can be reached, which follows
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from assumptions A1 and A2. Therefore γf is irreducible. We note that state 0 is aperiodic,

therefore the Markov chain under γf is also aperiodic.

We now verify the drift condition (10.13) in [37] by choosing V (q) = q2

2(Smax−λ) which is non-

negative if λ < Smax. Let pq,q′
∆
= Pr {Q[m+ 1] = q′|Q[m] = q, S[m+ 1] = s(q)}. We have that

∑
q′

pq,q′(V (q′)− V (q)) ≤ −q +
3S2

max + λ2 + σ2

2(Smax − λ)
,∀q ≥ 0.

As the function c(q) = q is near-monotone [37] and 3S2
max+λ2+σ2

2(Smax−λ) <∞ we have from [37, Theorem

10.3] that the Markov chain under the policy γf is c-regular, implying that it is also positive

recurrent with invariant distribution π. Then under the same policy we have that Eπcβ(q, s) <∞
as cβ(q, s) ≤ q + βc(Smax). This implies that we have verified condition (i) of Proposition 4 of

[67] and therefore from [67, Proposition 5] the first and third assumptions hold. We note that as

A[1] ≤ Amax, once Assumption (3) holds, Assumption (3*) is implied.

To verify Assumption (2) of [67] it is sufficient to show that the optimal discounted cost Vα(q) is

non-decreasing in q for every discount factor α ∈ (0, 1). This proposition follows as a special case

of [29, Lemma C.1] and therefore we claim that Vα(q) is non-decreasing in q without proof.

Then from [67, Theorem] there exists a stationary deterministic optimal policy γ∗β with optimal

average cost g∗β satisfying the following ACOE:

g∗β + Jβ(q) = min
s∈{0,...,min(q,Smax)}

{cβ(q, s) + EJβ(q − s+A[1])} ,

with the stationary optimal policy γ∗β using a batch size s∗β(q) at queue length q satisfying

s∗β(q) = arg min
s∈{0,...,min(q,Smax)}

{cβ(q, s) + EJβ(q − s+A[1])} ,

where Jβ(q) is the optimal relative value function.

4.B Proof of Lemma 4.3.2

Proof. The proof proceeds by contradiction. Let (Q[m],m ≥ 0) be the evolution of the queue

process under any stationary deterministic optimal policy γ∗β starting from initial state q0. We

assume that γ∗β is such that there exists a queue length q1 > 0, q1 ∈ Rβ, such that s∗β(q1) = 0.

Then we present a perturbation to this policy, which leads to a history dependent policy γ̃, which

has a smaller average queue length as well as average service cost, which contradicts the assumed

optimality of γ∗β. However, to compare Q(γ̃) with Q(γ∗β) and C(γ̃) with C(γ∗β), we identify a

delayed renewal process (Xk) embedded in (Q[m]). For γ∗β and γ̃, we associate different reward
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processes with (Xk) and use the Renewal Reward theorem to obtain Q(γ∗β), C(γ∗β), Q(γ̃), and

C(γ̃).

Consider the evolution (Q[m]). The first cycle X1 of the renewal process (Xk) is defined as follows

:

X1 = min{m : Q[m] = q1}.

At slot X1, Q[m] enters the recurrence class Rγ∗β and does not leave Rγ∗β again. We note that X1

depends only on the initial state q0 as (Q[m]) is Markov. If Tq(q1) is the random time taken to hit

q1 starting from q, then X1 = Tq0(q1). Furthermore for γ∗β, X1 <∞.

Now we note that by definition Q[X1] = q1 and S[X1 + 1] = 0. Let TSq1(1) be the smallest positive

integer such that S[X1 + TSq1(1) + 1] > 0, i.e., there is service of at least one customer in the

(X1 + TSq1(1) + 1)th slot. As (Q[m]) is Markov, the distribution of TSq1(1) given Q[X1] = q1,

is independent of (Q[m],m < X1). Let S1 ⊂ Rβ be the set of states in which at least one

customer is served. The distribution of TSq1(1) is the same as that of the smallest random time

TS , to hit S1, starting from q1. Furthermore, we note that the queue length random variable

Q(1) = Q[X1 + TSq1(1)] is distributed as the state QS of the Markov chain at the random time TS

when S1 is hit, starting from q1. The second cycle X2 is defined as

X2 = TSq1(1) + TQ(1)(q1).

Similarly, the kth cycle

Xk = TSq1(k − 1) + TQ(k−1)(q1),

where Q(k−1) = Q[Xk−1 +TSq1(k−1)]. We note that TSq1(k), k ≥ 1 are all IID and have the same

distribution as TS . The random variables Q(k), k ≥ 1 are all IID and have the same distribution

as QS . Hence, the random variables Xk, k ≥ 1 are independent and Xk, k ≥ 2 are identically

distributed. Thus (Xk) constitutes a delayed renewal process. From property O5, we have that

EXk <∞.

We now associate a queue cost and service cost process with the renewal process. In each cycle k,

we define the queue cost as the cumulative expected queue length :

CQk =

Xk−1∑
m=0

E [Q[Tk +m]|Q[Tk] = q1] ,

where Tk =
∑k−1

j=1 Xj . Using property O5, we have that ∀k ≥ 2, CQk < ∞ with probability 1, as

the optimal policy is cβ-regular [37]. Furthermore in each cycle k, we define the service cost as the
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Figure 4.2: Illustration of the queue evolution under policy γ∗β and its perturbation γ̃. The first three renewal

cycles X1, X2, and X3 are also shown.

cumulative expected service cost :

CCk =

Xk∑
m=1

E [c(S[Tk +m])|Q[Tk] = q1] .

Again using property O5, we have that ∀k ≥ 2, CCk <∞ with probability 1, as the optimal policy

is cβ-regular.

We note that the both CQk and CCk are dependent only on Xk. Then from the renewal reward

theorem we have that

Q(γ∗β) =
ECQ2
EX2

,

S(γ∗β) =
ECC2
EX2

.

In the following, we perturb γ∗β to obtain the policy γ̃. The perturbation, as well as the renewal

cycle embedded in Q[m] are illustrated in Figure 4.2.

We note that, given (S[1], S[2], . . . ), Q(γ) and C(γ) do not depend on the order of service for

customers. Therefore, we can assume that at least one customer, chosen to be served at Tk+1 +

TSq1(k) was present in the queue at Tk+1. Also, from the definition of TSq1(k), the system is idle in

the slots {Tk+1, . . . , Tk+1 + TSq1(k)}. The perturbed policy γ̃ advances the service of one customer
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served in the
(
Tk + TSq1(k) + 1

)th
slot to the (Tk + 1)th slot, for every cycle k. The policy does not

change the service batch size used at any other slot. To implement γ̃, the evolution of the queue

under the unperturbed γ∗β policy is simulated for the same arrival process, in order to ascertain

the slots at which the service batch size is to be changed. The policy γ̃ serves one customer at

the (Tk+1 + 1)th slot, and serves one customer less at the
(
Tk+1 + TSq1(k) + 1

)th
slot. To obtain

Q(γ̃) and C(γ̃), we use the same renewal process (Xk), but associate different per-cycle queue and

service cost costs. In cycle k ≥ 2, the new per-cycle queue cost is the cumulative expected queue

cost

˜
CQk = q1 +

Xk−1∑
m=1

E [Q[Tk +m]− 1|Q[Tk] = q1] .

As
˜
CQk < CQk using the renewal reward theorem we obtain that Q(γ̃) < Q(γ∗).

For γ̃, the cumulative expected service cost for a cycle k ≥ 2,

C̃Ck = c(1) +

Xk∑
m=2,m 6=Tk+TSq1 (k−1)+1

E [c(S[Tk +m])|Q[Tk] = q1] + E
[
c(S[Tk + TSq1(k − 1) + 1]|Q[Tk] = q1

]
.

The difference CCk − C̃Ck is

c(0) + c(S[Tk + TSq1(k − 1) + 1])− c(1)− c(S[Tk + TSq1(k − 1) + 1]− 1).

From convexity for any s ≥ 1, c(s) − c(s − 1) ≥ c(1) − c(0). Therefore, C̃Ck ≤ CCk and, using

the renewal reward theorem for γ̃, we obtain that C(γ̃) ≤ C(γ∗β). Therefore γ∗β cannot be optimal.

Hence, ∀q ∈ Rγ∗β such that q > 0, s∗β(q) > 0.

4.C Proof of Lemma 4.3.4

Proof. Case 1 : We first consider the case when sl = 0 and sl < λ < su. We note that the

stationary deterministic policy, s(q) = min(q, su) achieves the minimum average service cost c(λ).

Furthermore, the above policy has finite average queue length.

Case 2 : We now consider the case when sl ≥ 1 and sl < λ < su. Let α ∈ (0, 1) be such that

αsl + (1 − α)su = λ + ε, where ε > 0 and λ + ε < su. Let Sα,m be a sequence of IID random

variables with distribution

Sα,m ∼

sl w.p. α,

su w.p. 1− α.

Consider a stationary policy S(Q[m]) = min(Q[m], Sα,m). We note that as c(.) is monotonically
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non-decreasing,

Eπc(S(Q)) ≤ Eπc(Sα,1) ≤ c(λ+ ε) = c(λ) +mε,

where m = c(su)−c(sl)
su−sl . On squaring both sides of the evolution equation (4.1) and taking expecta-

tions with respect to the stationary distribution, we have that

EπQ[m+ 1]2 = Eπ
[
Q[m]2 + S(Q[m])2 +A[m+ 1]2 − 2S(Q[m])Q[m]− 2S(Q[m])A[m+ 1] + 2Q[m]A[m+ 1]

]
which implies that 2Eπ [Q[m]S(Q[m])−Q[m]A[m+ 1]] ≤ E

[
S2
α,1

]
+ E

[
A[1]2

]
.

Let ∆m = Sα,m−S(Q[m]), we note that ∆m ≤ su. Furthermore ∆m = 0 if Q[m] > su. Therefore

Q[m]S(Q[m]) = Q[m](Sα,m −∆m) ≥ Q[m](Sα,m)− s2
u. Hence we have that

2Eπ [Q[m]S(Q[m])−Q[m]A[m+ 1]] ≤ ES2
α,1 + EA[1]2,

2Eπ [Q[m](Sα,m −A[m+ 1])]− 2s2
u ≤ ES2

α,1 + EA[1]2,

or as m→∞, 2εEπQ ≤ 2s2
u + ES2

α,1 + EA[1]2,

EπQ ≤
1

2ε

[
2s2
u + ES2

α,1 + EA[1]2
]
.

Since EπQ is thus finite, we note that the above policy is admissible. By choosing ε from a sequence

of εk ↓ 0 as k ↑ ∞, we obtain a sequence of policies γεk ∈ Γa such that C(γεk)− c(λ) ≤ mεk and

Q(γεk) = O
(

1
εk

)
. Therefore limk↑∞C(γεk) = c(λ).

Case 3 : We next consider the case when 1 ≤ sl = λ = su < Smax. Let α ∈ (0, 1) be such that

αλ + (1 − α)(λ + 1) = λ + ε, where 0 < ε < 1. Again we let Sα,m be a sequence of IID random

variables with distribution

Sα,m ∼

λ w.p. α,

λ+ 1 w.p. 1− α.
(4.28)

Consider a stationary policy S(Q[m]) = min(Q[m], Sα,m). The rest of the proof for Case 3 is

similar to that of Case 2, and we obtain that there exists a sequence of policies γεk ∈ Γa such

that limεk↓0C(γεk) = c(λ). We note that for a sequence of εk ↓ 0, we obtain a sequence of

policies γεk ∈ Γa such that C(γεk) − c(λ) ≤ mεk and Q(γεk) = O
(

1
εk

)
. For both cases 2 and 3,

since C(γεk) − c(λ) ≤ mεk, by redefining εk we can obtain a sequence of policies γεk such that

C(γεk)− c(λ) = εk and Q(γεk) = O
(

1
εk

)
.

4.D Proof of Lemma 4.3.5

Proof. For a policy γ ∈ Γa, let qs
∆
= inf {q : ES(q) ≥ sl − ε} for a fixed positive ε < sl. Then

we note that from assumption G3, for q ≥ qs, ES(q) ≥ sl − ε. In the following, for q ≥ qs, we

find a lower bound on the probability that at least one customer is served, i.e., a lower bound on
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Pr {S(q) > 0}, given q ≥ qs. We note that for q ≥ qs.

ES(q) ≥ sl − ε,
Smax∑
s=0

sPr {S(q) = s} ≥ sl − ε,

SmaxPr {S(q) > 0} ≥ sl − ε, or,

P r {S(q) > 0} ≥ sl − ε
Smax

. (4.29)

For the policy γ, we have that π = πP where P is the transition probability matrix of the Markov

chain under policy γ, i.e. Pq1,q2 = Pr {Q[m+ 1] = q2|Q[m] = q1}. We note that for a q ≥ qs,

from (4.29), we have that there is a positive probability of reaching a state less than q, starting

from q in one step, i.e.

P (Q[m+ 1] < q|Q[m] = q) ≥
(
sl − ε
Smax

)
Pr {A[1] = 0} .

Let ρd
∆
=
(
sl−ε
Smax

)
Pr {A[1] = 0}. For q ≥ qs, from π = πP, we have

q−1∑
q′=0

π(q′) ≥ π(q)

q−1∑
q′=0

Pq,q′ ≥ π(q)ρd.

For q = qs, we have

Pr {Q < qs} ≥ π(qs)ρd.

For q = qs + 1, we have

Pr {Q < qs}+ π(qs) ≥ π(qs + 1)ρd,

or Pr {Q < qs}
(

1 +
1

ρd

)
≥ π(qs + 1)ρd. (4.30)

Proceeding similarly, we obtain that for q = qs + k, k ≥ 0

π(q) ≤ Pr {Q < qs}

(
1 + 1

ρd

)k
ρd

= Pr {Q < qs}
ρk

ρd
,

where ρ = 1 + 1
ρd
> 1.

Recall that in Chapter 3, we obtained a lower bound q̄
2 on the average queue length for a policy γ,

where q̄ was such that Pr {Q ≤ q̄} ≤ 1
2 . We use the same idea here. Let q̄ = sup{q :

∑q
q′=0 π(q′) ≤
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1
2}. Suppose Pr {Q < qs}

(
1 + ρ

ρd

)
< 1

2 . Let q̄1 be the largest integer such that

Pr {Q < qs}+ Pr {Q < qs}
q̄1∑
q=qs

ρq−qs

ρd
≤ 1

2
. (4.31)

Then q̄1 ≤ q̄. We note that (4.31) is equivalent to finding the largest q̄1 such that

Pr {Q < qs}
[
1 +

1

ρd

ρq̄1−qs+1 − 1

ρ− 1

]
≤ 1

2
,

or q̄1 ≤ logρ

[
1 + ρd (ρ− 1)

(
1

2Pr {Q < qs}
− 1

)]
.

Hence we obtain that the q̄1 is at least

logρ

[
1

2Pr {Q < qs}

]
− 1.

Since Q(γ) ≥ q̄
2 ≥

q̄1
2 , we have that

Q(γ) ≥ 1

2

[
logρ

[
1

2Pr {Q < qs}

]
− 1

]
.

4.E Proof of Lemma 4.3.7

TAIL-PROB :

Proof. The proof of TAIL-PROB follows from that of Lemma 2 and Theorem 3 (2) of Bertsimas

et al. [8], and is presented here for completeness. Let us define Q̂[m] = max(q1, Q[m]) and Q̂ =

max(q1, Q). Then we note that as q1 is finite, EπQ̂ <∞. Hence,
∑∞

q=0 π(q)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]

=

0. We split this sum into three parts leading to :

0 =

q1−1∑
q=0

π(q)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]

(4.32)

+ π(q1)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q1

]
(4.33)

+
∞∑

q=q1+1

π(q)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]
. (4.34)

Now, as in [8] we note that for q ∈ {0, · · · , q1 − 1}, Q̂[m] = q1 and Q̂[m+1] ≥ q1. Therefore (4.32)

≥ 0. Also we note that for q ∈ {q1 + 1, · · ·}, we have that Q̂[m] = Q[m] and Q̂[m+1] ≥ Q[m+1],
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so that (4.33) is bounded below by

∞∑
q=q1+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q] ≥ −d
∞∑

q=q1+1

π(q).

Now let us consider (4.33). We have that (4.33) =

E
[
Q̂[m+ 1]

∣∣∣Q[m] = q1

]
− q1 ≥ Emax(A[m+ 1]− S(q1), 0) ≥ 1.εa,

where assumption A2 is used. Substituting these lower bounds in (4.32) and (4.34) we have that

0 ≥ π(q1)εa − d
∞∑

q=q1+1

π(q),

= εaPr {Q ≥ q1} − εaPr {Q ≥ q1 + 1} − dPr {Q ≥ q1 + 1} .

Hence Pr {Q ≥ q1 + 1} ≥ εa
εa + d

Pr {Q ≥ q1} .

By redefining Q̂[m] = max(q1 + 1, Q[m]) we obtain that

Pr {Q ≥ q1 + 2} ≥ εa
εa + d

Pr {Q ≥ q1 + 1} .

Induction leads to the following bound, for k ≥ 1 :

Pr {Q ≥ q1 + k} ≥
(

εa
εa + d

)k
Pr {Q ≥ q1} .

TAIL-PROB-STATE-DEP-1 :

Proof. We note that in this case the lower bound on Pr {Q ≥ q1 + k} is obtained in terms of

expected drift over the tail of the queue length. Let us again define Q̂[m] = max(q1, Q[m])

and Q̂ = max(q1, Q). Then we note that as q1 is finite, EπQ̂ < ∞. Hence, we have that∑∞
q=0 π(q)E

[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]

= 0. We again split this sum into three parts leading

to :

0 =

q1−1∑
q=0

π(q)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]

(4.35)

+ π(q1)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q1

]
(4.36)

+

∞∑
q=q1+1

π(q)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]
. (4.37)

As in the case of (4.32) and (4.33) we lower bound (4.35) by zero and (4.36) by π(q1)εa. Let us
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consider the case qd > q1. Then (4.37) can be written as

qd∑
q=q1+1

π(q)E
[
Q̂[m+ 1]− Q̂[m]|Q[m] = q

]
+

∞∑
q=qd+1

π(q)E
[
Q̂[m+ 1]− Q̂[m]|Q[m] = q

]
,

≥ −d
qd∑

q=q1+1

π(q) +

∞∑
q=qd+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q] ,

using the definition of q1 and Q̂[m]. Using the lower bounds above on (4.35), (4.36), and (4.37)

we obtain that

0 ≥ εaπ(q1)− d
qd∑

q=q1+1

π(q) +

∞∑
q=qd+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q] ,

= εaPr {Q ≥ q1} − εaPr {Q ≥ q1 + 1} − dPr {Q ≥ q1 + 1}+ dPr {Q ≥ qd + 1}

+
∞∑

q=qd+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q] , or,

P r {Q ≥ q1 + 1} ≥ εa
εa + d

Pr {Q ≥ q1}+
d

εa + d
Pr {Q ≥ qd + 1} (4.38)

+
1

εa + d

∞∑
q=qd+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q] , (4.39)

Redefining Q̂[m] = max(q1 + 1, Q[m]), where q1 + 1 < qd, we obtain that

Pr {Q ≥ q1 + 2} ≥ εa
εa + d

Pr {Q ≥ q1 + 1}+
d

εa + d
Pr {Q ≥ qd + 1}

+
1

εa + d

∞∑
q=qd+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q] .

Induction leads to the following bound for q1 + k ≤ qd, k ≥ 1,

Pr {Q ≥ q1 + k} ≥
(

εa
εa + d

)k
Pr {Q ≥ q1}

+
1−

(
εa
εa+d

)k
d

εa+d

[
d

εa + d
Pr {Q ≥ qd + 1}+

1

εa + d

∞∑
q=qd+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q]

]
.

We note that the bound also holds trivially for k = 0. Simplifying we obtain that for q1, k ≥ 0,
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such that q1 + k ≤ qd,

Pr {Q ≥ q1 + k} ≥
(

εa
εa + d

)k
Pr {Q ≥ q1}

+

(
1−

(
εa

εa + d

)k)[
Pr {Q ≥ qd + 1}+

1

d

∞∑
q=qd+1

π(q)E [Q[m+ 1]−Q[m]|Q[m] = q]

]
.

TAIL-PROB-STATE-DEP-2 :

Proof. The derivation of this bound is very similar to that of TAIL-PROB-STATE-DEP-1. We

follow the steps in the proof of TAIL-PROB-STATE-DEP-1 till (4.39) with the drift d replaced by

d1. In this case, for 0 ≤ q1 < qd, (4.39) is further simplified to :

Pr {Q ≥ q1 + 1} ≥ εa
εa + d1

Pr {Q ≥ q1}+
d1

εa + d1
Pr {Q ≥ qd + 1} − d2

εa + d1
Pr {Q ≥ qd + 1} ,

since ∀q ≥ qd + 1, E [Q[m+ 1]−Q[m]|Q[m] = q] ≥ −d2. Hence, we have that

Pr {Q ≥ q1 + 1} ≥ εa
εa + d1

Pr {Q ≥ q1} −
d2 − d1

εa + d1
Pr {Q ≥ qd + 1} .

Again by induction as before, we obtain that for q1 + k ≤ qd, k ≥ 1,

Pr {Q ≥ q1 + k} ≥
(

εa
εa + d1

)k
Pr {Q ≥ q1} −

(
1−

(
εa

εa + d1

)k) d2 − d1

d1
Pr {Q ≥ qd + 1} .

The above lower bound also holds trivially for k = 0.

4.F An upper bound on Q(γ) for a policy γ

Let γ be such that at a queue length q, a batch size min(q, S(q)) is served, where S(q) ≤ Smax

is a random function of the current queue length. Furthermore, let γ be such that ES(q) is a

monotonically non-decreasing function of q such that there exists a finite queue length q1 such that

ES(q1) ≥ λ+ ε, where ε > 0. Then we have the following upper bound on Q(γ).

Proposition 4.F.1. For a policy γ as above, we have that

Q(γ) ≤ q1
λ+ ε

ε
+

EA[1]2 + S2
max

ε
.
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Proof. The proof is very similar to that of 2.A.1. Let L(q) = q2 be a Lyapunov function. Then the

Lyapunov drift

∆(q) = E [L(Q[m+ 1])− L(Q[m])|Q[m] = q] ,

≤ −2q(ES(q)− λ) + EA[1]2 + S2
max.

We note that for q ≥ q1, since ES(q) ≥ λ+ ε, we have that

∆(q) ≤ −2q(ε) + EA[1]2 + S2
max.

For q < q1, we have that

∆(q) ≤ −2q(ε) + 2q [λ+ ε− ES(q)] + EA[1]2 + S2
max,

≤ −2q(ε) + 2q1(λ+ ε) + EA[1]2 + S2
max.

Hence, ∀q, we have that

∆(q) ≤ −2q(ε) + 2q1(λ+ ε) + EA[1]2 + S2
max.

Now applying [36, Theorem A.4.3] we have that

Q(γ) ≤ q1
λ+ ε

ε
+

EA[1]2 + S2
max

ε
.

4.G Proof of Lemma 4.3.10

Let L(q)
∆
= eω(qv−q) be a Lyapunov function. Since for the policy γ, the batch size S̃(q) could be

more than q, the queue evolution equation under γ is written as

Q[m+ 1] = max(Q[m]− S̃(Q[m]), 0) +A[m+ 1].

The expected Lyapunov drift is

∆(q)
∆
= E [L(Q[m+ 1])− L(Q[m])|Q[m] = q] .
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Since (A[m]) is assumed to be IID, as in [43, Lemma 5(a)] we have that

∆(q) ≤ eω(qv−q)
[
Eeω(S̃(q)−A[1]) − 1

]
.

As in the proof of [43, Lemma 5(a)] we have that

Eeω(S̃(q)−A) ≤ 1 + ω(ES̃(q)− λ) +
ω2A2

max

2
eωAmax .

Hence, we have that

∆(q) ≤ ωeω(qv−q)
[
(ES̃(q)− λ) +K

]
.

where K = ωA2
max
2 eωAmax .

Now by definition, the policy γ is such that

S̃(q) =

sl, for 0 ≤ q < qv,

su, for qv ≤ q.

Then we have that for q < qv

∆(q) ≤ −ωeω(qv−q) [λ− sl −K] .

And for q ≥ qv,

∆(q) ≤ ωeω(q−qv) [(su − λ) +K] ,

= −ωeω(qv−q) [λ− sl −K] + ωeω(qv−q) [su − sl] ,

≤ −ωeω(qv−q) [λ− sl −K] + ω [su − sl] ,

Hence, for all q we have that

∆(q) ≤ −ωeω(qv−q) [λ− sl −K] + ω [su − sl] .

We choose ω such that K < λ − sl. Proceeding as in the proof of [43, Theorem 3(c)], we have

that

Eeω(qv−Q) ≤ [su − sl]
(λ− sl −K)

.
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Since Eeω(qv−Q) ≥ E
[
eω(qv−Q)|Q < sl

]
Pr {Q < sl}, we therefore have that

Pr {Q < sl} ≤ e−ωqv
eωsl [su − sl]
(λ− sl −K)

. (4.40)

Now we note that

C(γ) =
∑
s<sl

πs(s)c(s) + πs(sl)c(sl) + πs(su)c(su),

≤ Pr {Q < sl} c(sl − 1) + c(λ) (1− πs(sl)− πs(su)) +m [suπs(su) + slπs(sl)− λ(πs(su) + πs(sl))] ,

where m is the slope of l(s). Then, we have that

C(γ)− c(λ) ≤ [c(sl − 1) +mλ− c(λ)]Pr {Q < sl} .

Now consider the sequence of policies γk for which qv = log
(

1
Vk

)
for a sequence Vk < 1 such that

Vk ↓ 0. Then we have that C(γ) − c(λ) = O(Vk). Furthermore, from Proposition 4.F.1 we have

that Q(γ) = O
(

log
(

1
Vk

))
. We note that γk is also a sequence of admissible policies, since s(q)

is a non-decreasing function of q and Q(γk <∞.

4.H Proof of Lemma 4.3.17

Proof. Define Q̂[m]
∆
= max(qu, Q[m]) and Q̂ = max(qu, Q) for a qu ≥ 0. Then for any finite qu

we have that EQ̂ <∞ and therefore

∞∑
q=0

π(q)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]

= 0.

We note that this can be written as

0 =
∑

q≤qu−Amax

π(q)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]

(4.41)

+
∑

qu−Amax<q≤qu+Amax

π(q)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]

(4.42)

+
∑

qu+Amax<q

π(q)E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]
. (4.43)

Then we note that for (4.41) as q ≤ qu − Amax, Q̂[m] = qu and Q[m + 1] ≤ qu, so that

Q̂[m + 1] = qu. Therefore (4.41) = 0. Now consider (4.43). We note that for q > qu + Amax,
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both Q̂[m] and Q̂[m+ 1] are equal to Q[m] and Q[m+ 1] respectively. Therefore we have that

(4.43) =
∑

qu+Amax<q

π(q) [λ− s(q)] ,

≤ −(su − λ)Pr {Q > qu +Amax} .

We also note that for qu −Amax < q ≤ qu +Amax, Q̂[m+ 1]− Q̂[m] ≤ A[m+ 1]. Therefore,

(4.42) ≤ λPr {qu −Amax < Q ≤ qu +Amax} .

Using these upper bounds in (4.41), (4.42), and (4.43) we obtain that

0 ≤ λPr {qu −Amax < Q ≤ qu +Amax} − (su − λ)Pr {Q > qu +Amax} ,

which can be written as

0 ≤ λPr {Q > qu −Amax} − suPr {Q > qu +Amax} , or,

P r {Q > qu +Amax} ≤
λ

su
Pr {Q > qu +Amax} . (4.44)

Let ρu
∆
= λ

su
. Using (4.44) and inducting we obtain that

Pr {Q > qu} ≤ ρ

⌈
qu

2Amax

⌉
u , (4.45)

for any qu ≥ Amax.

By redefining qu to be qu + k, k ≥ 0, we can show that

Pr {Q > qu,l + k} ≤ ρ
⌈
qu+k

2Amax

⌉
u .

4.I Proof of Lemma 4.4.1

Proof. This proof is similar to that of the proof of Lemma 4.3.7-TAIL-PROB-STATE-DEP-1. We

define Q̂[m] = max(q1, Q[m]) and Q̂ = max(q1, Q). We note that since the policy is admissible

and q1 is finite, EπQ̂ <∞. Therefore∫ ∞
0

E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]
dπ(q) = 0.
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We again split the above integral into three parts which leads to

0 =

∫ q1−∆

0
E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]
dπ(q) (4.46)

+

∫ q1

q1−∆
E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]
dπ(q) (4.47)

+

∫ ∞
q1

E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]
dπ(q). (4.48)

where ∆ > 0 will be chosen in the following. We note that for q ∈ [0, q1 − ∆) we have that

Q̂[m] = q1 and Q̂[m+ 1] ≥ q1, so that (4.46) ≥ 0. Now as q1 ≤ qd and Q̂[m] ≥ Q[m] we obtain

that (4.48)

≥ −dPr{q1 ≤ Q < qd) +

∫ ∞
qd

E [Q[m+ 1]−Q[m]|Q[m] = q] dπ(q)

To obtain a lower bound on (4.47) we note that for q ≤ q1, Q̂[m] = q1 and Q̂[m + 1] ≥ q1. So

Q̂[m+ 1]− Q̂[m] ≥ 0. Then as in [7, steps (34), (35), and (36)] we use Markov inequality to lower

bound E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]
, q ∈ [q1 −∆, q1).

E
[
Q̂[m+ 1]− Q̂[m]

∣∣∣Q[m] = q
]
≥ δPr

{
Q̂[m+ 1]− Q̂[m] ≥ δ

∣∣∣Q[m] = q
}
,

≥ δPr {Q[m+ 1]−Q[m] ≥ δ + ∆|Q[m] = q} ,

= δPr {A[m+ 1]− S[m+ 1] ≥ δ + ∆|Q[m] = q} ,

≥ δPr {A[m+ 1]− Smax ≥ δ + ∆|Q[m] = q} ,

≥ δεa.

We note that ∆ and δ have to be chosen so that ∆ + δ < δa. Thus we obtain that (4.47) ≥
δεaPr {q1 −∆ ≤ Q < q1}. Combining these bounds and using E [Q[m+ 1]−Q[m]|Q[m] = q] =

ES(q)− λ, we obtain that

0 ≥ δεaPr {q1 −∆ ≤ Q < q1} − dPr{q1 ≤ Q < qd) +

∫ ∞
qd

E [Q[m+ 1]−Q[m]|Q[m] = q] dπ(q),

P r {Q ≥ q1} ≥
δεa

δεa + εV
Pr {Q ≥ q1 −∆}+

1

δεa + d

[
dPr {Q ≥ qd} −

∫ ∞
qd

(ES(q)− λ)dπ(q)

]

Similarly, if we define Q̂[m] = max(q1 + ∆, Q[m]) and if q1 + ∆ ≤ qd, we obtain that

Pr {Q ≥ q1 + ∆} ≥ δεa
δεa + εV

Pr {Q ≥ q1}+
1

δεa + d

[
dPr {Q ≥ qd} −

∫ ∞
qd

(ES(q)− λ)dπ(q)

]
.
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By induction, we obtain that if k ≥ 0, and q1 + k∆ ≤ qd, then Pr {Q ≥ q1 + k∆}

≥
(

δεa
δεa + εV

)k
Pr {Q ≥ q1}+

1−
(

δεa
δεa+εV

)k
d

[
dPr {Q ≥ qd} −

∫ ∞
qd

(ES(q)− λ)dπ(q)

]
,

=

(
δεa

δεa + εV

)k
Pr {Q ≥ q1}+

(
1−

(
δεa

δεa + εV

)k)[
Pr {Q ≥ qd} −

1

d

∫ ∞
qd

(ES(q)− λ)dπ(q)

]

4.J Proof of Lemma 4.4.3

Consider a particular policy γ in the sequence of policies γk. We note that the policy γ is a stationary

deterministic policy. Then, we have that

C(γ) =

∫ Smax

0
cR(s)dπs(s).

Since cR(s) is a non-decreasing function, we have that

C(γ) ≤ Pr {S < λ− εV } c(λ− εV ) + πs(λ− εV )c(λ− εV ) + πs(λ+ εV )c(λ+ εV ) + πs(λ+ ε)c(λ+ ε).

≤ Pr {S < λ− εV } c(λ) + πs(λ− εV )

(
c(λ)− εV

dc(λ)

ds
+O(ε2V )

)
+πs(λ+ εV )

(
c(λ) + εV

dc(λ)

ds
+O(ε2V )

)
+ πs(λ+ ε)

(
c(λ) + ε

dc(λ)

ds
+G(ε)

)
,

where G(ε) = c(λ+ ε)−
(
c(λ) + εdc(λ)

ds

)
.

Since there exists a finite queue length at which a service rate greater than λ is used, we have that∫ λ−εV

0
sdπs(s) + (λ− εV )πs(λ− εV ) + (λ+ εV )πs(λ+ εV ) + (λ+ ε)πs(λ+ ε) = λ, or,

−εV πs(λ− εV ) + εV πs(λ+ εV ) + επs(λ+ ε) =

∫ λ−εV

0
sdπs(s) ≤ λPr {S < λ− εV } .

Hence, we have that

C(γ) ≤ c(λ) + Pr {S < λ− εV }λ
dc(λ)

ds
+G(ε)πs(λ+ ε) +O

(
ε2V
)
.

We note that πs(λ+ ε) = Pr {Q > 2qv} and Pr {S < λ− εV } = Pr {Q < λ− εV }. We proceed

to find upper bounds on Pr {Q < λ− εV } and Pr {Q > 2qv}.

We first obtain an upper bound on Pr {Q < λ− εV } as in the proof of Lemma 4.3.10. Using the
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Lyapunov function L(q) = eω(qu−q) we have that the Lyapunov drift is

∆(q) ≤ ωeω(qv−q) (s̃(q)− λ+K) ,

where K = ωA2
max
2 eωAmax . Then, for q ≤ qv, we have that

∆(q) ≤ ωeω(qv−q) (−εV +K) .

For qv < q ≤ 2qv, we have that

∆(q) ≤ ωeω(qv−q) (εV +K) ,

= ωeω(qv−q) (−εV +K) + 2ωeω(qv−q)εV ,

≤ ωeω(qv−q) (−εV +K) + 2ωεV .

For 2qv < q, we have that

∆(q) ≤ ωeω(qv−q) (ε+K) ,

= ωeω(qv−q) (−εV +K) + 2ωeω(qv−q) (ε+ εV ) ,

≤ ωeω(qv−q) (−εV +K) + 2ω (ε+ εV ) .

Therefore, for every q, we have that

∆(q) ≤ ωeω(qv−q) (−εV +K) + 2ω (ε+ εV ) .

Let K = εV /2. Or we have that εV = ωA2
maxe

ωAmax . Then,

∆(q) ≤ −ωeω(qv−q) εV
2

+ 2ω (ε+ εV ) .

Now as in the proof of Lemma 4.3.10, we have that

Pr {Q < λ− εV } ≤
2 (ε+ εV )

εV
e−ω(qv−λ+εV ).

Let us choose qv = 1
ω log

(
1
ε3V

)
. Then we have that

Pr {Q < λ− εV } = O
(
ε2V
)

= O
(
ω2
)
. (4.49)

To obtain an upper bound on Pr {Q > 2qv}, we proceed similarly but with a Lyapunov function

L(q) = eω(q−qv). The expected Lyapunov drift is

∆(q)
∆
= E

[
eω(Q[m+1]−qv) − eω(Q[m]−qv)|Q[m] = q

]
.
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Then we have that

∆(q) = e−ωqvE
[
eω((q−s̃(q))++A) − eωq

]
.

As in [43], we have that

∆(q) ≤ e−ωqvE
[
eω(q−s̃(q)+A) − eωq

]
+ e−ωqv+ωδmax ,

where δmax = Amax + Smax. Or we have that

∆(q) ≤ eω(q−qv)E
[
e−ω(s̃(q)−A) − 1

]
+ e−ωqv+ωδmax ,

≤ −ωeω(q−qv)E [(s̃(q)−A)−K] + e−ωqv+ωδmax ,

= −ωeω(q−qv) [s̃(q)− λ−K] + e−ωqv+ωδmax ,

where K = ωA2
max
2 eωAmax .

For q ≤ qv, we have that

∆(q) ≤ −ωeω(q−qv) [−εV −K] + e−ωqv+ωδmax ,

≤ −ωeω(q−qv) [εV −K] + 2ωεV + e−ωqv+ωδmax .

For q > qv, we have that

∆(q) ≤ −ωeω(q−qv) [εV −K] + e−ωqv+ωδmax .

So for all q, we have that

−ωeω(q−qv) [εV −K] + 2ωεV + e−ωqv+ωδmax .

Since K = εV /2, we have that

ω
εV
2
E
[
eω(q−qv)

]
≤ 2ωεV + e−ωqv+ωδmax ,

E
[
eω(q−qv)

]
≤ 4 +

2e−ωqv+ωδmax

ωεV
.

Since eωqvPr {Q > 2qv} ≤ E
[
eω(q−qv)

]
, we have that

Pr {Q > 2qv} ≤ 4e−ωqv + e−ωqv
2e−ωqv+ωδmax

ωεV
.
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Since qv = 1
ω log

(
1
εV

)3
. Then we have that

Pr {Q > 2qv} ≤ 4ε3V + ε4VA
2
max2eω(δmax+Amax).

Therefore, from the above upper bound and (4.49), we have that both Pr {Q < λ− εV } and

Pr {Q > 2qv} are O
(
ε2V
)
. Since O (εV ) = O (ω), we have that both Pr {Q < λ− εV } and

Pr {Q > 2qv} are O
(
ω2
)
.

For the sequence of policies γk, we have that C(γk) − c(λ) = O
(
ω2
k

)
= O (Vk). Since qvk =

O
(

1
ωk

log
(

1
ε3V

))
, we have that qvk = O

(
1√
Vk

log
(

1
Vk

))
. Therefore, using Proposition 4.F.1, with

q1 = 2qv, we have that Q(γk) = O
(

1√
Vk

log
(

1
Vk

))
. We note that the policy γk is admissible.

Therefore, we have a sequence of admissible policies γk such that Q(γk) = O
(

1√
Vk

log
(

1
Vk

))
. and

C(γk) = O (Vk).
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CHAPTER 5

On the tradeoff of average power and average delay

for fading wireless links

5.1 Introduction

Minimizing the average power as well as the average delay is a major requirement in current wireless

communication networks, which brings the problem of designing good scheduling and power control

policies to the forefront. In this chapter, we consider the characterization of the optimal tradeoff

between average power and average queue length for a fading point to point link, with and without

admission control, and obtain bounds on the tradeoff of average power and average delay by applying

Little’s law. The models that we consider capture some of the important issues underlying the

general problem for wireless networks: there is bursty arrival of traffic which can be subjected

to admission control, the channel gain varies unpredictably, and the transmitter can dynamically

change its transmission rate by varying the transmission power. The bounds that we derive are

obtained using the methods discussed in Chapter 4, and are asymptotic in nature. However, unlike

the models in Chapter 4, where there was only a single environment state and no admission control,

here we consider models with multiple environment states as well as with admission control. We

also consider the asymptotic characterization of the tradeoff for models with multiple queues in this

chapter. The glossary of notation that we use in this chapter is given in Table 5.1.
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Symbol Description

m slot index

R[m] random number of arrivals in slot m (before admission control)

A[m] random number of arrivals in slot m (after admission control)

Amax maximum number of arrivals in any slot

λ, σ2 mean and variance of A[1]

H set of fade states

πH distribution of fade state

H[m] fade state in slot m

Q[m] queue length at the start of (m+ 1)th slot

S[m] batch service size in slot m

Smax maximum batch service size

σ[m] history of queue evolution

γ policy - (S[1], S[2], · · · )
Γ set of all policies

Γs set of all stationary policies

Q(γ) average queue length for a policy γ

P (h, s) power expended as a function of fade state h and batch size s

P (γ) average power for a policy γ

Pc average power constraint

c(λ) minimum average power required for queue stability for I-model

cR(λ) minimum average power required for queue stability for R-model

Γa set of all admissible policies

s(q) average service rate at a queue length q

Q∗(Pc) minimum average queue length over Γa under constraint Pc

εa probability of A[m] exceeding Smax

A(γ) average throughput for a policy γ

π stationary distribution for a policy which is clear from the context

πγ stationary distribution for policy γ

Table 5.1: Notation used in this chapter.
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5.1.1 Methodology

As stated in Section 4.1.1, the scheme for obtaining asymptotic lower bounds in this chapter is very

similar to that in Chapter 4. We briefly summarize the differences. We again obtain q which is the

largest q such that Pru {Q < q} ≤ 1
2 . However, we note that geometric bounds for Pru {Q < q}

are obtained as functions of the average drift of the queue length, where the averaging is done over

the slot fade state also. For the tradeoff problem in this chapter, again a non-negative function

D(q) will be obtained, where EπD(Q) is the difference between the average power (rather than the

average service cost) and c(λ). For illustrating the method, we again consider the case of integer

valued queue evolution and obtain a geometric upper bound Pru {Q < q}. The steps which were

followed for obtaining the Ω
(
log
(

1
V

))
asymptotic lower bound for the example in Section 4.1.1

can then be directly applied to obtain an Ω
(
log
(

1
V

))
asymptotic lower bound for the tradeoff of

average delay with average power.

5.1.2 System model - Integer valued queue length evolution

We consider a discrete time system with slots indexed by the positive integer m. We assume that

there is no admission control, so that A[m] = R[m],∀m. In each slot m, a random number of

packets A[m] ∈ Z+, where each packet is of the same size, arrive into the transmitter queue.

The arrival sequence (A[m],m ≥ 1) is assumed to be IID with A[1] ≤ Amax, batch arrival rate

EA[1] = λ <∞, var(A[1]) = σ2 <∞. The packets are assumed to arrive into an infinite buffer, in

which they wait until they are transmitted over a point to point fading channel. The fade state is

assumed to be constant in a slot. The fade state takes values in a finite set H, with min {H} > 0,

and the fade state process (H[m],m ≥ 1), is assumed to be IID, with H[1] ∼ πH . The expectation

with respect to πH is denoted by EπH . The processes (A[m]) and (H[m]) are assumed to be

independent of each other.

The number of customers in the queue at the start of the (m+ 1)th slot is denoted by Q[m]. The

system is assumed to start with Q[0] = q0 ∈ Z+ customers. At the end of slot m, a batch with

S[m] ∈ Z+ packets is removed from the transmitter queue just before the A[m] new packets which

arrive in the mth slot are admitted. We assume that S[m] ≤ min (Q[m− 1], Smax), where Smax is

the maximum batch size that can be served. The queue evolution sampled at the slots is given by:

Q[m+ 1] = Q[m]− S[m+ 1] +A[m+ 1]. (5.1)

The evolution of the queue length is illustrated in Figure 5.1.

At the start of slot m, the history of the system is defined as:

σ[m]
∆
= (q0, H[1], S[1], Q[1], H[2], S[2], Q[2], . . . , Q[m− 2], H[m− 1]).
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Figure 5.1: Evolution of the queue length Q[m]; the batch size S[m] is chosen as a randomized function of

the fade state H[m], the queue length Q[m− 1], and the history of the process σ[m].

At the beginning of slot m, the scheduler observes H[m] and chooses a batch service size S[m] ∈ Z+

as a randomized function of the history σ[m], the current queue length Q[m− 1], and the current

fade state H[m].

We define a policy γ to be the sequence of service batch sizes (S[1], S[2], . . . ). The set of all

policies is denoted by Γ. If γ is such that S[m + 1] = S(Q[m], H[m + 1]), then γ is a stationary

policy. The set of all stationary policies is denoted as Γs. In this chapter, we restrict attention to

Γs in light of the discussion in Section 4.2.1, which also holds for this model. We also note that

since H[m] is assumed to be IID, the process (Q[m],m ≥ 0) is a Markov chain, if γ ∈ Γs.

The transmitter expends P (h, s) units of power when transmitting s bits, when the fade state is h.

We note that P (h, s) is a function of the fading gain h2, when the fade state is h. Motivated by

many examples (see [7] and [77]) of P (h, s), we assume that ∀h ∈ H, P (h, s) satisfies the following

properties:

C1 : P (h, 0) = 0, and

C2 : P (h, s) is non-decreasing and convex in s, for s ∈ {0, . . . , Smax}.

The average power for a policy γ is

P (γ, q0)
∆
= lim sup

M→∞

1

M
E

[
M∑
m=1

P (H[m], S[m])

∣∣∣∣∣Q[0] = q0

]
. (5.2)

The average queue length for a policy γ is

Q(γ, q0)
∆
= lim sup

M→∞

1

M
E

[
M−1∑
m=0

Q[m]

∣∣∣∣∣Q[0] = q0

]
. (5.3)

We consider the optimal tradeoff of P (γ, q0) with Q(γ, q0) for this model. The optimal tradeoff

between P (γ, q0) and average delay can be obtained from this using Little’s law and is discussed in

the following. We note that I-model considered in Chapter 4 is a special case of this model, with a
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single fade state.

5.1.3 System model - Real valued queue length evolution

We state only the differences from the model discussed in the previous section. We assume that

for m ≥ 1, A[m] ∈ [0, Amax], S[m] ∈ [0, Smax], and q0 ∈ R+. Hence, the queue length Q[m] ∈
R+,∀m ≥ 0. The function P (h, s) is assumed to satisfy the following properties:

RC1 : P (h, 0) = 0, for every h ∈ H,

RC2 : P (h, s) is an increasing, strictly convex function in s, for s ∈ [0, Smax], for every h ∈ H.

The average power and average queue length are as in (5.2) and (5.3) respectively.

The tradeoff of average power and average queue length, for such models without admission control,

has been studied by Berry and Gallager [7], Neely [43], Goyal et al. [29], Bettesh and Shamai [10],

Biyikoglu et al. [77] as well as many others. We note that this model is similar to that considered

by Berry and Gallager [7], except that in [7], Smax =∞. We recall that Berry and Gallager obtain

that any sequence of policies γk, for which P (γk) is at most Vk more than the above minimum

power required for queue stability, has Q(γk) = Ω
(

1√
Vk

)
, as Vk ↓ 0. We also note this model is

similar to R-model considered in Chapter 4, except that in Chapter 4 we considered the case with

a single fade state.

In the following, the model in the previous section, where the queue length evolution is assumed to

be on the non-negative integers, is called the I-model, while the model described here, where the

queue length evolution is assumed to be on the non-negative real numbers, is called the R-model.

We note that as in Chapter 4, R-model with fading and P (h, s) being strictly convex is usually used

as an approximation for I-model. When used as an approximation, P (h, s) for R-model coincides

with P (h, s) for I-model for s ∈ {0, . . . , Smax} ,∀h.

5.1.4 An example

Throughout this chapter, to illustrate the results for I-model and R-model, we use the following

example. The number of packets A[1] which arrive in a slot is assumed to be distributed according

to a Binomial(Amax, p) distribution, with arrival rate rakb/s. The rate of service r in kb/s is

assumed to be 200 log10 (1 + SNR), where SNR is the received signal to noise ratio. We assume

that SNR = h2P
L , where h2 is the fading gain, P is the transmit power, and L encompasses the

loss due to attenuation as well as noise power.

We assume that the slots are of duration 2ms. We also assume that each packet has a size of

100-bits. Then the arrival rate of packets in a slot is λ = ra
50 . We assume that if h2 = 1 and
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P = 1W then r = 50. Therefore, if P (h, r) is the transmit power as a function of the fade state

and the rate, we have that P (h, r) = 1.28
h2

(
10r/200 − 1

)
. We note that in one slot, the number

of bits served is 2r. We assume that the transmitter, in each slot, can choose its transmission

rate in the set {0, 50, 100} kb/s. To fit this example to our model, we express the queue length

in units of 100 bits. Then in each slot, we have a Binomial arrival process of 100-bit packets and

service of s 100-bit packets, where s ∈ {0, 1, 2}. The transmit power as a function of h and s is

P (h, s) = 1.28
h2

(
1050s/200 − 1

)
, s ∈ {0, 1, 2}. We note that the average queue length, as defined,

is in units of 100 bits.

For R-model, we assume the same distribution for A[1]. The set of possible batch sizes is as-

sumed to be ∈ [0, 2]. The transmit power as a function of h and s is assumed to be P (h, s) =
1.28
h2

(
1050s/200 − 1

)
but for s ∈ [0, 2].

The above example uses a similar model for the rate as a function of the SNR as the example in

Section 2.1.3. However, in this chapter, we consider a slot level model, which models the system

on a faster time scale compared to the continuous time model in Chapter 2. Consideration of the

faster time scale is necessary since we are interested in the average delay advantage that can be

achieved by scheduling the packets in accordance with the channel variations in each slot.

5.1.5 Overview

As in the previous chapter, the objective in this chapter is to obtain an asymptotic characterization

of the minimum average queue length as the average power is a small V more than the minimum

average power required for stability. We formulate the tradeoff problem for I-model and R-model

in Section 5.2 for a set of admissible policies, whose definition is similar to that in Chapter 4. We

also obtain the infimum of the average power over the set of admissible policies, which is also the

minimum average power required for stability of the queue, and discuss its properties in the same

section. The asymptotic analysis of the tradeoff problem is then carried out in Section 5.3. For

I-model, we show that depending on the value of λ, three cases arise, which are similar to those

for the I-model in Chapter 4. For the first case, through numerical experiments, we show that the

minimum average queue length does not increase to infinity for an admissible policy which achieves

the infimum of the average power over the set of admissible policies. For the second and third

cases, as in Chapter 4, we show that the minimum average queue length increases as Θ
(
log
(

1
V

))
and Θ

(
1
V

)
as V ↓ 0. For R-model, we show that the minimum average queue length is Ω

(
1√
V

)
.

We note that this is the same as the Berry-Gallager lower bound, but the set of admissible policies

that we consider is a subset of the set of admissible policies considered in [7]. For the example

in Section 5.1.4, we provide some numerical results to illustrate the bounds in Section 5.5. As

in Chapter 4, we also obtain an asymptotic log
(

1
V

)
lower bound on the minimum average queue

length for I-model, when (A[m]) and (H[m]) are assumed to be ergodic in Section 5.6.
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We then consider queueing models, I-model-U and R-model-U, which are similar to I-model and

R-model, but with admission control, in Section 5.7. The tradeoff problems for I-model-U and R-

model-U, are formulated in Section 5.7.2 and its asymptotic analysis is carried out in Section 5.7.3.

We show that the minimum average queue length increases as Θ
(
log
(

1
V

))
when the average service

cost is V more than the minimum, when V ↓ 0 and with a lower bound constraint on the utility of

average throughput.

We consider a single hop network model, which is an extension of R-model, in Section 5.8.

5.2 Problem formulation for I-model and R-model

Our objective is to characterize the minimum average queue length for a given constraint Pc on the

average transmit power. The following formulation is for both the I-model and the R-model. The

tradeoff problem is

minimize
γ∈Γ

Q(γ, q0), such that P (γ, q0) ≤ Pc. (5.4)

We note that as in Section 4.2.1 it is possible to formulate a CMDP for the above problem. The

state space of the CMDP is Z+ ×H, the action space at each (q, h) ∈ Z+ ×H is the set of batch

sizes, and the evolution of the process is as given in (5.1).

Similar to the quantities c(λ) and cR(λ) defined for I-model and R-model in Chapter 4, it is possible

to obtain quantities c(λ) and cR(λ) for I-model and R-model discussed above. The quantities c(λ)

and cR(λ) can be interpreted as the minimum average power required for mean rate stability of

the queue for I-model and R-model respectively. Then it is possible to show that if Pc > c(λ) for

I-model (or Pc > cR(λ) for R-model), then there exists an optimal stationary policy γ∗ for the

above problem with stationary distribution π∗. So in the following we consider the above problem

for policies in Γs.

For I-model, as discussed in Section 4.2.1, from Ma et al. [35], if Pc is such that there exists a

Lagrange multiplier βPc ≥ 0 and the average cost optimal policy γβPc for a MDP with single stage

cost q + βPcP (h, s) in state (q, h) has P (γβPc , q0) = Pc, then γβPc is optimal for (5.4). The set of

all such Pc is denoted as Ou (similar to Ou in Chapter 4). It can then be shown that for all Pc ∈ Ou,

there exist optimal stationary deterministic policies for (5.4). Furthermore, such optimal stationary

deterministic policies are such that the service batch size s(q, h) is monotonically non-decreasing in

q for every h. Then, as in Chapter 4, we consider the above tradeoff problem only for policies γ in

an admissible set Γa for all values of Pc, where the definition of admissible policies is motivated by

the above monotonicity property of any stationary deterministic optimal policy for Pc ∈ Ou. Since

R-model is an approximation to the I-model, the definition of admissible policies for R-model is

motivated by the monotonicity property of any stationary deterministic optimal policy for Pc ∈ Ou

for I-model.
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We now state the properties which are satisfied by admissible policies for both I-model and R-

model. A policy γ is stable, if (i) the Markov chain (Q[m],m ≥ 0) under γ is irreducible, aperiodic,

and positive Harris recurrent with stationary distribution π, and (ii) Q(γ, q0) < ∞. A policy γ is

admissible if:

G1 : it is stable, and,

G2 : the average service rate in state q, s(q)
∆
= EπHES|q,HS(q,H) is non-decreasing in q 1.

For an admissible policy γ, we have that the performance measures Q(γ, q0) and P (γ, q0) are

independent of the initial queue state q0 and exist as limits. Therefore, in the following, these

performance measures are denoted by Q(γ) and P (γ) respectively.

So in the following we consider the problem TRADEOFF:

minimize
γ∈Γa

Q(γ), such that P (γ) ≤ Pc. (5.5)

The optimal value of TRADEOFF is denoted as Q∗(Pc). We note that whenever Pc ∈ Ou, since

there exists an optimal admissible policy Q∗(Pc) is the solution to (5.4).

For an admissible policy γ, we note that since the arrival rate is constant, from Little’s law the

average delay for γ is Q(γ)
λ . The tradeoff of average delay with average power can be obtained as

Q∗(Pc)
λ .

As in Chapter 4, it is possible to consider a larger class of policies Γa,M , which is obtained by mixing

or time sharing of policies in Γa. Let Q∗M (Pc) denote the optimal value of the above problem, but

with the minimization carried out over the set Γa,M . We note that the asymptotic behaviour

for Q∗M (Pc) can be directly obtained from Q∗(Pc). Therefore, in the following we consider the

asymptotic characterization of Q∗(Pc) only.

If Pc is such that the above problem is feasible, then by definition there exists a feasible admissible

policy γ such that Q(γ) ≤ Q∗(Pc) + ε. Such a policy is called ε-optimal in the following.

We note that for any admissible policy γ, Q(γ) = EπQ and P (γ) = EπEH|QES|Q,HP (H,S(Q,H)).

Since Q and H are independent, we also have that P (γ) = EπEπHES|Q,HP (H,S(Q,H)). For any

γ ∈ Γa, we note that the average arrival rate λ has to be equal to the average service rate, i.e.,

λ = EπEH|QES|Q,HS(Q,H) = Eπs(Q). Therefore, for γ ∈ Γa, P (γ) is lower bounded by the

1We note for a stationary deterministic policy s(q, h) is non-decreasing in q for every h. Therefore, EπH s(q,H)
is non-decreasing in q. Since, we are considering randomized policies, we assume that EπHES|q,HS(q,H) is non-
decreasing in q.
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optimal value of

minimize
γ∈Γa

EπEH|QES|Q,HP (H,S(Q,H)),

such that EπEH|QES|Q,HS(Q,H) = λ, (5.6)

since the only constraint is on the average service rate. Now we note that EπEH|QES|Q,HS(Q,H) =

EπHEQ|HES|Q,HS(Q,H). Then, we have that

EQ|HES|Q,HS(Q,H) =

∫
q

∫
s
s.dps,q|H .dπ(q) =

∫
s

∫
q
s.dps,q|H =

∫
s
s

∫
q
dps,q|H ,

we have that EπHEQ|HES|Q,HS(Q,H) = EπHES|HS where the conditional distribution of S given

H depends upon the policy. A similar procedure can be carried out on EπEH|QES|Q,HP (H,S(Q,H))

which leads to EπEH|QES|Q,HP (H,S(Q,H)) = EπHES|HP (H,S). Then the optimal value of

(5.6) is bounded below by the optimal value of

minimize EπHES|HP (H,S), (5.7)

such that EπHES|HS = λ,

where we minimize over all possible conditional distributions for the batch size S given H, irre-

spective of the policy. For the I-model, we denote the optimal value of (5.7) by c(λ), while for

the R-model we denote the optimal value of (5.7) by cR(λ) (we note that c(λ) and cR(λ) are

the minimum powers required for mean rate stability for the I-model and R-model respectively, see

[43]). We note that for the R-model, the conditional distribution of the batch size has support on

[0, Smax], while for the I-model the conditional distribution has support on {0, . . . , Smax}. Hence,

cR(λ) ≤ c(λ),∀λ ∈ [0, Smax]. We note that feasible solutions exist for the above problem only if

λ ≤ Smax.

We have that ∀γ ∈ Γa, P (γ) ≥ c(λ) for the I-model, and P (γ) ≥ cR(λ) for the R-model. From

[43, Theorem 1], we have that if λ < Smax, then for every Pc > c(λ) (or every Pc > cR(λ) for the

R-model), there exists an admissible policy γPc , such that P (γPc) ≤ Pc and as Pc ↓ c(λ), Q(γPc)

grows without bound. Since, for an arrival rate of λ, c(λ) (or cR(λ) for the R-model) can be

approached arbitrarily closely by admissible policies, c(λ) (or cR(λ) for the R-model) is the infimum

of the average power for admissible policies.

For the I-model, since properties (C1) and (C2) are assumed to hold, from [43, Section VII], we have

that c(λ) is a piecewise linear (a proof is given in Appendix 5.A), non-decreasing convex function,

for λ ∈ [0, Smax], with c(0) = 0. Again from [43], cR(λ) is a non-decreasing, strictly convex

function of λ ∈ [0, Smax], with cR(0) = 0. For the example discussed in Section 5.1.4, the function

c(λ) and cR(λ) are illustrated in Figure 5.2, for different H and πH as well as for the R-model and

the I-model. We observe the following: a) for cases (i) and (iii) in Figure 5.2, for the same mean
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fading gain EπHH2, for λ < 1.2, having a fading gain larger than the mean with some positive

probability leads to a smaller c(λ); b) for case (iv) we see that cR(λ) for the R-model is strictly

convex. The function cR(λ) ≤ c(λ), and coincides with c(λ) for λ ∈ {0.5, 1, 1.5}; c) for both (i)

and (ii) the function c(λ) is piecewise linear, but the λ-s at which the slope changes is different

and depends on πH . We consider another example of c(λ) and cR(λ) for the example in Section

5.1.4 with H = {0.1, 1} and πH(0.1) = 0.6. In this case, cR(λ) < c(λ) for all λ 6∈ {0.4, 0.8, 1.4}.
From these examples, we can conclude for the R-model a smaller minimum average power cR(λ) is

sufficient for stability, compared with c(λ) for the I-model.
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(i) H ∈ {0.5, 1} w.p (0.5, 0.5), S ∈ {0,1,2}

(ii) H ∈ {0.5, 1} w.p (0.7, 0.3), S ∈ {0,1,2}

(iii) H = 0.7906, S ∈ {0,1,2}

(iv) H ∈ {0.5,1} w.p (0.5, 0.5), S ∈ [0,2] c
R
(λ)

Figure 5.2: The optimal value c(λ) of problem (5.7) for I-model: i) with H ∈ {0.5, 1} with πH(0.5) = 0.5

and S ∈ {0, 1, 2}, ii) with H ∈ {0.5, 1} with πH(0.5) = 0.7 and S ∈ {0, 1, 2}, and iii) with S ∈ {0, 1, 2} and

fade state fixed at 0.7906 =
√

0.5× 0.52 + 0.5× 12 with the same average fading gain as (i). For R-model:

(iv) with H ∈ {0.5, 1} with πH(0.5) = 0.5 and S ∈ [0, 2].

As shown in Figures 5.2 and 5.3, it is possible that cR(λi) = c(λi) for some λi ∈ [0, Smax]. We will

see from the asymptotic analysis in the next section, that the asymptotic growth rate of minimum

average queue length suggested by the R-model and the I-model for such λi are different. We note

that, in general, it is not known for what λi, if any, cR(λi) = c(λi). However, if |H| = 1, it is clear

that cR(s) = c(s),∀s ∈ {0, . . . , Smax}.

5.3 Asymptotic bounds for I-model

In this section, we obtain an asymptotic characterization of Q∗(Pc) for I-model and R-model as

Pc ↓ c(λ) and Pc ↓ cR(λ) respectively. For I-model, as in Chapter 4, we assume

A1 : Pr {A[1] > Smax} > εa > 0.

A2 : Pr {A[1] = a} > 0, for all a ∈ {0, . . . , Amax},
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c(1.7) = 114.0245

c
R

(1.7) = 106.4286

Figure 5.3: The optimal value of problem (5.7): c(λ) for I-model and cR(λ) for R-model, with H ∈ {0.1, 1}
and πH(0.1) = 0.6; c(1.7) is 107% of cR(1.7).

For R-model as in Chapter 4, we assume

RA1 : Pr {A[1]− Smax > δa} > εa, for positive δa and εa.

We note that part of this analysis was presented in [61]. We consider the I-model first. Consider any

γ ∈ Γa. To obtain the asymptotic behaviour of Q∗(Pc) as Pc ↓ c(λ), we ascertain the asymptotic

behaviour of π(q) as Pc ↓ c(λ). We note that π(q) determines the average queue length and the

average power given the policy. As we have seen in Chapter 4, it turns out that the asymptotic

behaviour of π(q), is determined by the average drift of the queue, λ−s(q), at a queue length q. So

we proceed by relating the average power to the average drift λ− s(q). We note that the average

power used when the queue length is q is EπHES|q,HP (H,S(Q,H)), which is bounded below by

the optimal value of

minimize EπHES|HP (H,S),

such that EπHES|HS = s̄(q),

where we have considered all possible conditional distributions on the batch size with support on

{0, . . . , Smax}, subject only to the constraint that the average service rate is s̄(q). The above

optimization problem is the same as (5.7) except that the constraint is now s̄(q) instead of λ.

Therefore, the average power used when the queue length is q is bounded below by c(s(q)). We

note that any feasible policy γ for TRADEOFF has P (γ) ≤ Pc. Then for that γ, Eπc(s(Q)) ≤
P (γ) ≤ Pc. We also note that from the convexity of c(s), Eπc(s(Q)) ≥ c(λ), since Eπs(Q) = λ.

Now as Pc ↓ c(λ), for any sequence of feasible policies for TRADEOFF, Ec(s(Q)) ↓ c(λ).
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Case 1 Case 2 Case 3

0 0 0

Figure 5.4: Illustration of the relationship between λ, sl, and su along with the minimum average cost c(λ)

and the line l(s) for the three cases

The behaviour of Q∗(Pc) as Pc ↓ c(λ) is observed to depend on the relationship of λ with

c(s), s ∈ [0, Smax]. Since c(s) is piecewise linear, we can define a sequence of intervals [ap, bp],

p ∈ {1, . . . , P}, with ap+1 = bp, a1 = 0, and bP = Smax. The sequence of intervals is such that

for s ∈ [ap, bp], c(s) is linear. The following three cases arise:

1. a1 = 0 < λ < b1,

2. ap < λ < bp, p > 1, and,

3. λ = ap, p > 1.

We note that cR(ap) = c(ap) in Figures 5.2 and 5.3. For Case 1, through numerical examples, we

illustrate that Q∗(Pc) does not grow to infinity as Pc ↓ c(λ). We obtain an asymptotic lower bound

for Case 2 which is the asymptotic lower bound to the super-fast log
(

1
V

)
upper bound observed

for the sequence of policies constructed by Neely in [43, Corollary 2], but for admissible policies.

We also obtain an asymptotic lower bound for Case 3 which is used to illustrate another difference

between the asymptotic behaviours of Q∗(Pc) in the R-model and I-model.

For Cases 1 and 2, let sl
∆
= ap and su

∆
= bp, while for Case 3 let sl = su

∆
= ap

2. An example is

shown in Figure 5.4. We define the line l(s) : [0, Smax]→ R+ as follows:

1. If sl < λ < su, then l(s) is the line through (sl, c(sl)) and (su, c(su)).

2. If sl = λ = su = ap for some p > 1, then l(s) is a line through (λ, c(λ)) with slope m chosen

such that
c(ap)−c(ap−1)
ap−ap−1

< m <
c(ap+1)−c(ap)
ap+1−ap .

We note that El(s(Q)) = c(λ). We now present asymptotic lower bounds for Q∗(Pc), which follow

directly from the asymptotic lower bounds in Lemmas 4.3.8 and 4.3.13.

Lemma 5.3.1. For Case 2, given any sequence of admissible policies γk with P (γk)−c(λ) = Vk ↓ 0,

we have that Q(γk) = Ω
(

log
(

1
Vk

))
.

2We note that unlike in Chapter 4, sl and su need not be integers.
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Proof. We first note that for the sequence γk, since P (γk) − c(λ) = Vk, we have that Uk
∆
=

Eπc(s(Q))− c(λ) ↓ 0, with Uk ≤ Vk. The rest of the proof is very similar to that of Lemma 4.3.8.

With s(q) replacing ES(q) and Uk replacing Vk (with an inequality) in the proof of Lemma 4.3.8,

and m being redefined as the tangent of the angle made by the line passing through (ap−1, c(ap−1))

and (ap, c(ap)) with l(s), and proceeding as in the proof of Lemma 4.3.8 we have that Q(γk) =

Ω
(

log
(

1
Uk

))
= Ω

(
log
(

1
Vk

))
, since Uk ≤ Vk.

We note that an asymptotic upper bound for Case 2 can be obtained from a sequence of TOCA

policies from [43]. However, TOCA policies are not admissible. Therefore, we now present an

asymptotic upper bound for a sequence of policies, which is similar to the sequence of buffer

partitioning policies proposed by Berry and Gallager [7].

Lemma 5.3.2. Let a policy γ be defined as follows. When the queue length is q and fade state is

h, γ serves a batch size min(q, S̃(q, h)), where

S̃(q, h) ∼

pl(h), for 0 ≤ q < qv,

pu(h), for qv ≤ q.

where qv > 0, pl(h) and pu(h), ∀h ∈ H are the optimizing distributions for (5.7) with the constraint

being sl and su respectively. We obtain a sequence of policies γk, by choosing qv = log
(

1
Vk

)
, where

Vk < 1 is a sequence decreasing to zero. Then for Case 2, γk is a sequence of admissible policies,

such that P (γk)− c(λ) = O(Vk) and Q(γk) = O
(

log
(

1
Vk

))
.

The proof of this asymptotic upper bound is given in Appendix 5.B. We note that the proof is quite

similar to that of Lemma 4.3.10.

We then have the following result.

Proposition 5.3.3. For Case 2, we have that Q∗(Pc,k) = Θ
(

log
(

1
Pc,k−c(λ)

))
where Pc,k ↓ c(λ)

and Pc,k = P (γk) for the sequence of policies in Lemma 5.3.2.

The proof is very similar to that of Proposition 4.3.11 and is therefore omitted.

Remark 5.3.4. We now consider a sequence of policies generated from a modified form of the

tradeoff optimal control algorithm (TOCA) [43]. We note that in [43], the control variable is the

power allocation, and the service rate is obtained as a function of the power allocation and the

current fade state. The set of all possible power allocations (Π in [43]) is the same for all fade

states. However, in our model the control variable is the batch size. Therefore, we modify TOCA

such that the set of power allocations is a function of the fade state. For each fade state, the

possible power allocations are such that the batch sizes takes all possible values in {0, . . . , Smax}.
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The modified TOCA algorithm is again parametrized by positive numbers w, ε, q̃, and β as in [43].

The algorithm chooses at each slot m ≥ 1, the batch size sTOCA such that

sTOCA[m] = min

(
arg min

s∈{0,...,Smax}

{
βP (H[m], s)−W [m]s

}
, Q[m− 1]

)
,

where

W [m] = I {Q[m− 1] ≥ q̃}
[
wew(Q[m−1]−q̃) + 2X[m− 1]

]
+ I {Q[m− 1] < q̃}

[
−wew(q̃−Q[m−1]) + 2X[m− 1]

]
.

We note that sTOCA[m] = 0 if W [m] ≤ 0. The sequence X[m],m ≥ 0 is obtained from a virtual

queue which evolves according to

X[m+ 1] = max(X[m]− sTOCA[m+ 1]− εI {Q[m] < q̃} , 0) +A[m+ 1] + εI {Q[m] ≥ q̃} .

As in [43], let δmax = max(Amax, Smax). For our Case 2, let 0 < ε < min(λ − ap, bp − λ),

w = ε
δ2
max

e
−ε
δmax , and q̃ = 2

w log (β). A sequence of TOCA policies γk is generated by choosing

a sequence βk = 1
Vk

, for a sequence Vk ↓ 0. The proof of [43, Corollary 2] extends to the above

version of the TOCA algorithm, and we have that

Q(γk) = O
(

log

(
1

Vk

))
, P (γk) = c(λ) +O (Vk) .

Therefore, we obtain that for the sequence of policies γk, Q(γk) = O
(

log
(

1
P (γk)−c(λ)

))
. We note

that W [m] is a non-decreasing function of q, where Q[m − 1] = q. Since sTOCA[m] is a non-

decreasing function of W [m], we have that sTOCA[m] is a non-decreasing function of Q[m − 1].

However, γk is not a sequence of admissible policies, since the policies γk depend on the auxiliary

variable X[m−1]. We note that the above upper bound is an upper bound on the optimal value of

(5.4). Furthermore, as in Remark 4.3.12, for any subsequence Pc,k of Ou such that there exists a

constant m ≥ 1 and a subsequence PTOCA,k of P (γk) such that PTOCA,k−c(λ) ≤ m (Pc,k − c(λ)),

we have that Q∗(Pc,k) ≤ Q(γk) = O
(

log
(

1
PTOCA,k−c(λ)

))
= O

(
log
(

1
Pc,k−c(λ)

))
.

Lemma 5.3.5. For Case 3, given any sequence of admissible policies γk with P (γk)−c(λ) = Vk ↓ 0,

we have that Q(γk) = Ω
(

1
Vk

)
.

Proof. We again note that for the sequence γk, since P (γk) − c(λ) = Vk, we have that Uk
∆
=

Eπc(s(Q))− c(λ) ↓ 0, with Uk ≤ Vk. The rest of the proof is very similar to that of Lemma 4.3.13.

With s(q) replacing ES(q) and Uk replacing Vk (with an inequality) in the proof of Lemma 4.3.13,

and m being redefined as the tangent of the angle made by the line passing through (ap, c(ap))

and (ap+1, c(ap+1)) with l(s), and proceeding as in the proof of Lemma 4.3.13 we have that

Q(γk) = Ω
(

1
Uk

)
= Ω

(
1
Vk

)
, since Vk ≤ Uk.
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Remark 5.3.6. The derivation of the relationship between the difference of the P (γ) and c(λ) and

the average drift defined as
∑∞

q=qd+1 E [Q[m+ 1]−Q[m]|Q[m] = q]π(q), in the proof of Lemma

4.3.13, is motivated by the approach in [7]. We note that in our proof, qd can be chosen arbitrarily

by the choice of εV and then εV can be chosen so as to obtain the tightest asymptotic lower bound.

However, in [7], qd cannot be chosen arbitrarily. In fact, qd is chosen as the queue length which

has the maximal stationary probability of all queue lengths in the set
{

0, . . . ,
⌈
2Q(γ)

⌉}
for a policy.

The freedom in the choice of qd enables us to derive the Ω
(

1
V

)
asymptotic lower bound.

Remark 5.3.7. As in the analysis of Case 3 in Chapter 4, it is possible to show that a sequence

of randomized policies {γk} achieves the asymptotic lower bound derived above for Case 3. The

sequence of policies is parametrized by a sequence Vk ↓ 0. For a particular Vk, the policy chooses

S[m] = min(S′(H[m]), Q[m− 1]),

where S′(H[m]) is independently chosen for each m and is distributed according to any condi-

tional distribution of batch size given H[m] which is optimal for (5.7) but with the rate con-

straint being λ + Vk. For a particular Vk, it can then be shown that P (γk) = c(λ + Vk)

and Q(γk) ≤
σ2+2S2

max+EπHES(H)2−λ2

2Vk
. Then as k → ∞ and Vk ↓ 0, Q(γk) = O

(
1
Vk

)
and

P (γk) = c(λ) +O(Vk).

We have the following result.

Proposition 5.3.8. For Case 3, we have that Q∗(Pc,k) = Θ
(

1
Pc,k−c(λ)

)
where Pc,k ↓ c(λ) and

Pc,k = P (γk) for the sequence of policies in the above remark.

The proof is very similar to that of Proposition 4.3.11 and is therefore omitted.

5.4 Asymptotic bounds for R-model

We now consider the asymptotic behaviour of Q∗(Pc) in the asymptotic regime < as Pc ↓ cR(λ) for

the R-model. Similar to the I-model, it can be shown that the average power used when the queue

length is q is bounded below by cR(s(q)). We again note that any feasible policy γ for TRADEOFF

has P (γ) ≤ Pc, and for that γ, EπcR(s(Q)) ≤ P (γ) ≤ Pc. We also note that from the convexity of

cR(s), EπcR(s(Q)) ≥ cR(λ), since Eπs(Q) = λ. Now as Pc ↓ cR(λ), for any sequence of feasible

policies for TRADEOFF, EcR(s(Q)) ↓ cR(λ). We note that the following result is similar to the

Berry-Gallager lower bound, but is derived with the extra assumption G2.

Lemma 5.4.1. For any sequence of admissible policies γk with P (γk)− cR(λ) = Vk ↓ 0, we have

that Q(γk) = Ω
(

1√
Vk

)
. Therefore, Q∗(Pc) = Ω

(
1√

Pc−c(λ)

)
as Pc ↓ cR(λ).
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Proof. We note that for the sequence γk, since P (γk) − cR(λ) = Vk, we have that Uk
∆
=

EπcR(s(Q)) − cR(λ) ↓ 0, with Uk ≤ Vk. The rest of the proof is similar to that of Proposi-

tion 4.4.2. We follow all the steps in the proof of Proposition 4.4.2, with s̄(q) replacing ES(q)

and Uk replacing Vk (with an inequality) in the proof of Proposition 4.4.2, to obtain that Q(γk) =

Ω
(

1√
Uk

)
= Ω

(
1√
Vk

)
. Let γ′k be a sequence of ε-optimal policies for TRADEOFF for the sequence

Pc,k. Then we have that P (γ′k) ↓ cR(λ) and Q(γ′k) = Ω

(
1√

Pc,k−cR(λ)

)
. Since γ′k is ε-optimal, we

have that Q∗(Pc,k) ≥ Q(γ′k)− ε. Therefore, Q∗(Pc,k) = Ω

(
1√

Pc,k−c(λ)

)
as Pc,k ↓ cR(λ).

Remark 5.4.2. A sequence of admissible policies γk can be obtained which achieves the above

asymptotic lower bound up to a logarithmic factor, as in Lemma 4.4.3. The proof of this upper

bound is very similar to that of Lemma 5.3.2 and is therefore omitted. A particular policy γ in

the sequence is defined as follows. The policy γ serves a batch size min(q, S̃(q, h) when the queue

length is q and fade state is h, where

S̃(q, h) ∼


p−(h), for 0 ≤ q < qv,

p+(h), for qv ≤ q < 2qv,

pε(h), for 2qv ≤ q,

where qv > 0, p−(h), p+(h), and pε(h),∀h ∈ H are the optimizing distributions for (5.7) with the

constraint being λ − εV , λ + εV , and λ + ε respectively. We obtain a sequence of policies γk, by

choosing εV and qv from sequences εVk and qvk defined as follows. Let ωk =
√
Vk, where Vk ↓ 0.

Let εVk = ωkA
2
maxe

ωAmax and qvk = 1
ωk

log

(
1
ε3Vk

)
.

Remark 5.4.3. As in Remark 5.3.4, for a sequence of policies γk generated by the modified form of

TOCA, it is possible to show as in [43], that for Vk <
1

Smax
, βk = 1

Vk
, εk = 1√

βk
, wk = εk

δ2
max

e−
εk

δmax ,

and q̃k = 6
wk

log
(

1
εk

)
,

Q(γ) = O
(√

1

Vk
log

(
1

Vk

))
,

P (γ) = c(λ) +O (Vk) ,

as Vk ↓ 0. We note that the above asymptotic upper bound applies only to problem (5.4), since

the sequence of policies considered above is not admissible.

5.5 A numerical example

To illustrate the results obtained in the previous section, we plot the optimal tradeoff curve for the

example in Section 5.1.4. We note that the results in this section apply only to I-model. We assume
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that Amax = 5. We consider first a case where the fading gain H = {0.5, 1} with πH(0.5) = 0.5.

The tradeoff curves Q∗(Pc) for λ ∈ {0.9, 1.0, 1.1}, are shown in Figure 5.5. We note that these

arrival rates correspond to bit arrival rates of 45, 50, and 55 kb/s respectively. Each point in the

tradeoff curves is obtained by numerical solution of a suitably truncated MDP with state being the

current queue length and the current fade state, and single stage cost q + βP (h, s), where β > 0

is a Lagrange multiplier. Each tradeoff curve is obtained by varying β. From Figure 5.2 we have

that c(0.9) = 1.20, c(1.0) = 1.384, and c(1.1) = 1.781. From the asymptotic characterization

of Q∗(Pc), we have that for λ = 1.0, Q∗(Pc) increases as 1/(Pc − 1.384), while for λ = 0.9

and 1.1, Q∗(Pc) increases as log
(

1
Pc−c(λ)

)
. In Figure 5.5, we observe that for the same average

queue length, the difference between the average service cost and c(λ) increases from λ = 0.9 to

λ = 1.0 and then decreases. This difference is even more pronounced in Figure 5.6, where λ is

increased from 0.78 to 0.80 and then to 0.82 for the example in Section 5.1.4 with H = {0.1, 1}
and πH(0.1) = 0.6.
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Figure 5.5: The optimal tradeoff Q∗(Pc) for the system in Section 5.1.4 withH = {0.5, 1} and πH(0.5) = 0.5,

for λ ∈ {0.9, 1.0, 1.1} with c(0.9) = 1.2, c(1.0) = 1.384, and c(1.1) = 1.781.

1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

P
c
 (W)

Q
* (P

c) (
x 

10
0 

bi
ts

)

 

 

λ = 0.78, r
a
 = 39 kb/s

λ = 0.80, r
a
 = 40 kb/s

λ = 0.82, r
a
 = 41 kb/s

c(0.82) = 3.0995

c(0.80) = 1.1071

c(0.78) = 1.0717

Figure 5.6: The optimal tradeoff Q∗(Pc) for the system in Section 5.1.4 withH = {0.1, 1} and πH(0.1) = 0.6,

for λ ∈ {0.78, 0.80, 0.82} with c(0.78) = 1.0717, c(0.80) = 1.1071, and c(0.82) = 3.0995.
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For the example in Section 5.1.4, with H = {0.1, 1} and πH(0.1) = 0.6, for λ = 0.82, we plot

the optimal tradeoff curve Q∗(Pc), the asymptotic lower bound from Lemma 5.3.1 (using Lemma

4.3.8), and the upper bound for the sequence of policies from Remark 5.3.4, in Figure 5.7. We

note that the upper bound is obtained via simulation, for a sequence of policies for which q̃ has

been chosen to be 1
20 of what is suggested in [43, Theorem 3]. This heuristic has been used in

[43]. The analytical upper bound for the sequence of TOCA policies from [43, Theorem 3] is found

to be very weak. We note that the asymptotic bounds, although tight in the order sense, are very

weak. To illustrate the bounds for Case 3, for the system in Section 5.1.4, with H = {0.1, 1} and

πH(0.1) = 0.6, for λ = 0.8, we plot the optimal tradeoff curve Q∗(Pc), the asymptotic lower bound
q3
2 from Lemma 5.3.5 (using Lemma 4.3.13), and the upper bound for the sequence of policies from

Remark 5.3.7, in Figure 5.8. Again the upper bound is obtained via simulation.

Upper bound
Lower bound

Figure 5.7: Comparison of the optimal tradeoff Q∗(Pc) with the lower bound from Lemma 4.3.8 and the upper

bound from Remark 5.3.4 for the system in Section 5.1.4, for λ = 0.82, for H = {0.1, 1} and πH(0.1) = 0.6
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Figure 5.8: Comparison of the optimal tradeoff Q∗(Pc) with the lower bound from Lemma 4.3.13 and

the upper bound from Remark 5.3.7 for the system in Section 5.1.4, for λ = 0.8, for H = {0.1, 1} and

πH(0.1) = 0.6

The numerical results illustrate that the asymptotic bounds which are obtained using the methods

in Chapter 4 are weak, although they are tight in the order sense for Cases 2 and 3.
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We consider the case λ = 0.2 in Figure 5.9, which corresponds to Case 1 for the example in Section

5.1.4, for both H = {0.5, 1} and H = {0.1, 1}. We note that c(0.2) is 0.1992 for both H = {0.5, 1}
and H = {0.1, 1}. We observe that Q∗(Pc) approaches a finite value in both cases. We note that,

for Case 1, if |H| = 1, it is possible to show that there exists a policy γ such that P (γ) = c(λ) and

Q(γ) <∞.
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Figure 5.9: The optimal tradeoff Q∗(Pc) for the system in Section 5.1.4, for λ = 0.2, for two cases of H;

Q∗(Pc) approaches a finite value in both cases.

The exact nature of Q
∗
(Pc) for the different cases depends on the shape of π(q) in the regime <.

We first consider Cases 2 and 3 for I-model. Intuition for the behaviour of Q
∗
(Pc) for R-model is

similar to that of Case 3 for I-model. In Figures 5.10 and 5.11 we illustrate the behaviour of the

probability mass function (PMF) of the queue length for Cases 2 and 3. For each case, the PMF

has been obtained by solving the global balance equations of the DTMC for the optimal policy for

the truncated MDP used in Figure 5.6.

We now present our observations about the nature of π(q) in the regime < using the above example.

We note that the intuition about the shape of π(q) in the regime <, which we discuss below, holds
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Figure 5.10: PMF of queue length for optimal policies in the regime < for Case 2 for the system in Section

5.1.4; H = {0.1, 1} and πH(0.1) = 0.6; λ = 0.78 and c(0.78) = 1.0717.
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Figure 5.11: PMF of queue length for optimal policies in the regime < for Case 3 for the system in Section

5.1.4; H = {0.1, 1} and πH(0.1) = 0.6; λ = 0.8 and c(0.8) = 1.1071.

for any sequence of feasible admissible policies, rather than just the sequence of optimal admissible

policies.

For I-model, let Qh = {q : µ(q) ∈ [sl − εV , su + εV ]}, where εV is ω(V ) as V ↓ 0. Then it can be

shown that Pr {Q ∈ Qh} ↑ 1 as V ↓ 0, i.e., as V ↓ 0, the service rates have to be chosen from the

set [sl − εV , su + εV ] or [λ− εV , λ+ εV ] for Cases 2 and 3 respectively.

The expected drift of the queue length when the queue length is q is E [Q[m+ 1]−Q[m]|Q[m] = q].

We note that for admissible policies the expected drift is a non-increasing function of q.

We consider Case 2 first. We note that since service rates can be chosen from the set [sl−εV , su+εV ]

as V ↓ 0, intuitively the expected drift in the queue length for small queue lengths in Qh is positive,

while for large queue lengths in Qh the expected drift is negative. From the geometric upper bound

on π(q), intuitively π(q) grows geometrically for small queue lengths. Since the expected drift of

the queue length for large queue lengths is negative, from the geometrically decreasing upper bound

on Pr {Q > q − 1} and geometrically decreasing lower bound on Pr {Q > q} from [9, Theorem

3] we have that π(q) decreases geometrically to zero for large enough q. We note that this is the

geometrically increasing and decreasing behaviour of π(q) which is illustrated in Figure 5.10. We

also note that this behaviour holds for any V > 0 and as illustrated in the example in above leads

to log
(

1
V

)
behaviour of the average queue length for any sequence of admissible policies.

For Case 3, we note that for q ∈ Qh, as V ↓ 0, the expected drift approaches 0. Suppose we define

qd as largest queue length in Qh and εV as aV where a > 0 is a constant. Then it can be shown

that for any q ∈ Qh
Pr {Q < q} ≤

(
1−

(
εa

εa + d

)q)
× a constant.

We note that the drift d = εV = aV . Hence, Pr {Q < q} ≈ O
(
q aVεa

)
. Therefore, using the bounds

on the stationary probability distribution, we are able to obtain the intuition that the stationary

probability for any q ∈ Qh is constant (this is illustrated in Figure 5.11) and O(V ). Then we have
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that the largest q such that Pr {Q < q} ≤ 1
2 is Ω

(
1
V

)
, and therefore so is the asymptotic lower

bound on the minimum average queue length.

For R-model, we let Qh = {q : µ(q) ∈ [λ− εV , λ+ εV ]}. The intuition for the shape of the distri-

bution for R-model is similar to that for Case 3 above. With εV = a
√
V the stationary probability

for any q ∈ Qh is O
(√

V
)

and thus the asymptotic lower bound on q is Ω
(

1√
V

)
and therefore so

is the asymptotic lower bound on the minimum average queue length.

5.6 Asymptotic lower bounds for ergodic (A[m]) and (H[m])

In this section, we present an asymptotic lower bound for the optimal value of (5.4) when (A[m])

and (H[m]) are ergodic processes, for I-model.

We restrict to policies in Γs, which choose a batch service size S[m] = S(Q[m − 1], H[m]) as a

function of the current queue length and fade state and independently of anything else. We note

that such policies may not be optimal. The development for ergodic (A[m]) and (H[m]) closely

follows the development in Section 4.3.7.

Since (A[m]) is assumed to be ergodic, we have that almost surely

lim
M→∞

1

M

M∑
m=1

A[m] = EA[1] = λ,

and λ < Smax, where Smax is the largest batch size which can be served, as defined before. We

also assume that the arrival process (A[m]) is such that

NA1 : Let σ[m− 1] = (Q[0] = q0, A[1] = a1, Q[1] = q1, A[2] = a2, . . . , A[m− 1] = am−1, Q[m−
1] = qm−1). We assume that

inf
m∈Z+

min
{a1,...,am−1}
{q1,...,qm−1}

Pr {A[m] = 0|σ[m− 1]} = νa > 0,

NA2 : (A[m]) is independent of (H[m]).

Since (H[m]) is assumed to be ergodic, we have that

Pr {H[m] = h} = πH(h),∀h ∈ H,∀m ≥ 1,

with
∑

h∈H πH(h) = 1.

We restrict to policies γ ∈ Γs for which the following limits exist

lim
m→∞

Pr {Q[m− 1] = q,H[m] = h} = πQ,H(q, h),∀q ∈ Z+ and h ∈ H, (5.8)
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with
∑

q,h π(q, h) = 1. We note that for such a policy the following limits also exist

lim
M→∞

1

M

M−1∑
m=0

Pr {Q[m] = q} = π(q), ∀q ∈ Z+,

lim
M→∞

1

M

M∑
m=1

Pr {H[m] = h, S[m] = s} = πH,S(h, s), ∀s ∈ {0, . . . , Smax} , ∀h ∈ H,

lim
M→∞

1

M

M∑
m=1

Pr {S[m] = s} = πs(s), ∀s ∈ {0, . . . , Smax} .

We again restrict to a set of admissible policies Γa ⊆ Γs, which are defined similarly as in Section

4.3.7. A policy γ ∈ Γs is admissible if :

NG1 : the limits in (5.8) exist

NG2 : γ is mean rate stable, i.e.,
∑

h∈H
∑Smax

s=0 πH,S(h, s)s = λ,

NG3 : the average service rate s(q) =
∑

h πH(h)ES(q, h) is a non-decreasing function of q for γ.

For any admissible policy γ, we have that P (γ) =
∑

h∈H
∑

s∈{0,...,Smax} πH,S(h, s)P (h, s) and

Q(γ)
∆
=
∑

q π(q)q.

For any admissible policy γ, we have that P (γ) is bounded below by the optimal value of

minimize
γ∈Γa

∑
h∈H

∑Smax
s=0 πH,S(h, s)P (h, s),

such that
∑

h∈H
∑Smax

s=0 πH,S(h, s)s = λ,

where πH,S(h, s) is determined by the policy γ. The optimal value of the above problem is bounded

below by the optimal value of

minimize
ps|h(s),h∈H

∑
h∈H πH(h)

∑Smax
s=0 ps|h(s)P (h, s),

such that
∑

h∈H
∑Smax

s=0 πH(h)ps|h(s)s = λ,

which is c(λ). We note that in the above optimization problem, the minimization is over all

possible conditional distributions on the batch size. The conditional distribution ps|h(s) has the

interpretation of the fraction of time a batch of size s is used when the fade state is h.

Let us denote the optimal conditional distribution that achieves c(λ) in (5.7) by p∗s|h(λ),∀h ∈ H.

Similar to the approach in Section 4.3.7, we now show that there exists a sequence of admissible

policies γV for a sequence V ↓ 0 such that limV ↓0 P (γV ) = c(λ). We define random variables

UV (h) ∼ p∗s|h(λ+ V ), ∀h ∈ H. For a particular V > 0, the policy γV , serves S[m] = min(Q[m−
1], UV [m]), where for each m, UV [m] is an independent sample of UV (H[m]). Then the queue
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evolution under γV is

Q[m+ 1] = max

(
Q[m]− UV (H[m+ 1]), 0

)
+A[m+ 1], with Q[0] = q0, ∀m ≥ 0.

Applying [34, Lemma 1] we have that the limit πQ,H(q, h) = limm→∞ Pr {Q[m] = q,H[m+ 1] = h}

exists. With Q′[1] = max

(
q0 − UV (H[1]), 0

)
, we can define a sequence Q′[m] which evolves as

Q′[m+ 1] = max

(
Q′[m] +A[m]− UV (H[m+ 1]), 0

)
,∀m ≥ 1.

We note that Q[m] = Q′[m] + A[m],∀m ≥ 1. Since the sequence ζ[m] = A[m]− UV (H[m+ 1])

is ergodic, Eζ[1] = −V < 0, and A[1] < Amax, we have that limm→∞ Pr {Q[m] <∞} = 1.

We note that the sequence of policies γV is a sequence of admissible policies, with limV ↓0 P (γV ) =

c(λ). Therefore c(λ) = infγ∈Γa P (γ).

Now we obtain the following asymptotic lower bound, the proof of which is similar to that of Lemma

4.3.23. We note that the quantities sl, su and the line l(s) are defined as in Section 5.3.

Lemma 5.6.1. For an ergodic arrival process (A[m],m ≥ 1), satisfying NA1 and NA2, an ergodic

fading process (H[m],m ≥ 1), and for any sequence of admissible policies γk (satisfying NG1, NG2,

and NG3), with P (γk)− c(λ) = Vk ↓ 0, we have that Q(γk) = Ω
(

log
(

1
Vk

))
, for cases 2 and 3.

Proof. For some positive ε < sl, let qs
∆
= inf {q : ES(q,H) ≥ sl − ε}. Then, as in the proof of

Lemma 5.3.1, we have that Uk
∆
= Eπγk c(s(Q)) − c(λ) ≤ Vk. We consider a particular policy γ in

the sequence with Eπc(s(Q)) − c(λ) = U . As in the proof of Lemma 4.3.23 with U in place of

V , we can then show that
∑qs−1

q=0 π(q) ≤ U
m1ε

and Pr {S(q,H) > 0} ≥ sl−ε
Smax

,∀q ≥ qs, since for

q ≥ qs, ES(q,H) ≥ sl − ε. Now we relate the stationary probability π(q), q ≥ qs to
∑qs−1

q=0 π(q).

We have that for a q ≥ qs and for every m ≥ 0

Pr {Q[m+ 1] < q|Q[0] = q0} = Pr {Q[m]− S(Q[m], H[m+ 1]) +A[m+ 1] < q|Q[0] = q0} .

Let σ[m] = (S[1], Q[1], . . . , Q[m− 1], S[m]).

We have that Pr {Q[m]− S(Q[m], H[m+ 1]) +A[m+ 1] < q|Q[0] = q0}

= Eσ[m]

[
Pr {Q[m]− S(Q[m], H[m+ 1]) +A[m+ 1] < q|Q[0] = q0, σ[m]}

]
,

≥ Eσ[m]

[
Pr {Q[m] = q|Q[0] = q0, σ[m]} ×

Pr {S(Q[m], H[m+ 1]) > 0|Q[0] = q0, σ[m], Q[m] = q} ×

Pr {A[m+ 1] = 0|Q[0] = q0, σ[m], Q[m] = q, {S(Q[m], H[m+ 1]) > 0}}
]
.
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We note that since σ[m] does not involve the history of the fade process we have that

Pr {S(q,H[m+ 1]) > 0|Q[0] = q0, σ[m], Q[m] = q} ≥ sl − ε
Smax

.

Since (Q[0] = q0, σ[m], Q[m] = q, {S(Q[m]) > 0}) = (Q[0] = q0, A[1], Q[1], . . . , A[m], Q[m] =

q), using property NA1, we obtain the same lower bound as in the proof of Lemma 4.3.23 on

Pr {Q[m+ 1] < q|Q[0] = q0}. Following the rest of the steps in the proof of Lemma 4.3.23, we

obtain that Q(γk) = Ω
(

log
(

1
Uk

))
. Since Uk ≤ Vk, we have that Q(γk) = Ω

(
log
(

1
Vk

))
.

We note that NA2 is not used in the asymptotic lower bound, while it was used in showing that a

sequence of admissible policies exist for which P (γk) ↓ c(λ).

The above asymptotic lower bound is weak for Case 3, since we have obtained an Ω
(

1
V

)
asymptotic

lower bound when (A[m]) is IID. We note that the above asymptotic lower bound can be applied

to the system considered by Huang and Neely [30]. We note that a similar asymptotic lower bound

can be derived for the R-model also.

5.7 Queueing models with admission control

5.7.1 System model

We consider the optimal tradeoff of average queue length and average power for a fading point-

to-point link, when the packets arriving to the link can be dropped, subject to a constraint on the

utility of the time average throughput of the packets which are transmitted. We indicate only the

differences from the models in Sections 5.1.2 and 5.1.3. In each slot m, a random number R[m]

of packets arrive into the system. We assume that (R[m],m ≥ 1) are IID, with R[1] ≤ Amax,

ER[1] = λ, and var(R[1]) = σ2 < ∞. We also denote the expectation with respect to the

distribution of R[1] as ER. At the end of slot m, A[m] ≤ R[m] packets are admitted into the

infinite length transmitter queue, while R[m]−A[m] packets are dropped. The fade state process,

(H[m],m ≥ 1), is as before. We also assume that the arrival process (R[m]) is independent

of (H[m]). At the beginning of slot m ≥ 1, Q[m − 1] denotes the number of packets in the

transmitter queue. The transmitter starts transmission of S[m] packets at the start of slot m. We

assume that just before the end of slot m, A[m] ≤ R[m] packets are admitted into the transmitter

queue. We note that under our assumptions on (S[m]), (A[m]), and q0, Q[m] ∈ R+, ∀m ≥ 0.

For this model, a policy γ for operation of the transmitter is the sequence of service and arrival

batch sizes (S[1], A[1], S[2], A[2], . . . ). The set of all policies is denoted as Γ. If γ is such that

S[m + 1] = S(Q[m], H[m + 1]) and A[m + 1] = A(Q[m], R[m + 1], H[m + 1]), where S(q, h)

and A(q, r, h) are randomized functions, then γ is a stationary policy. The set of stationary policies

is denoted by Γs. Since (R[m], H[m],m ≥ 1) is assumed to be IID, we have that for a γ ∈ Γs,
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(Q[m],m ≥ 0) is a Markov chain evolving on R+.

If we assume that A[m], R[m], q0, S[m] ∈ Z+, then the queue evolution Q[m] ∈ Z+ and the

model is denoted as I-model-U. On the other hand, if A[m], R[m], q0, S[m] ∈ R+, then the queue

evolution Q[m] ∈ R+, and the model is denoted as R-model-U. Like R-model, R-model-U with a

strictly convex P (h, s) function is usually used as an approximation for I-model-U.

We define the average throughput of a policy γ ∈ Γs as

A(γ, q0) = lim inf
M→∞

1

M
E

[
M∑
m=1

A[m]

∣∣∣∣∣Q[0] = q0

]
. (5.9)

Let U(a) : [0, Amax] → R+ be a strictly concave and increasing function of a, with U(0) = 0.

The utility of transmitting the packets is U(A(γ, q0)), for a policy γ. The average power for a

policy γ ∈ Γs is P (γ, q0) and the average queue length is Q(γ, q0), as defined in (5.2) and (5.3)

respectively.

The model considered by Neely [44] is the same as R-model-U. It is shown in [44] that there exists

a sequence of policies γk ∈ Γs with a corresponding sequence Vk ↓ 0, such that A(γk, q0) ≥ ρλ

(0 < ρ < 1), Q(γk, q0) = O
(

log
(

1
Vk

))
, and P (γk, q0) is at most Vk more than the minimum

average power required for queue stability. It is also shown in [44] for |H| = 1, that if γk is any

sequence of policies, with P (γk, q0) at most Vk more than the minimum average power required for

queue stability and A(γk, q0) ≥ ρλ, then Q(γk, q0) = Ω
(

log
(

1
Vk

))
as Vk ↓ 0.

We consider the optimal tradeoff between Q(γ, q0) and P (γ, q0) subject to the average utility

U(A(γ, q0)) being at least a positive uc < U(Amax), for the class of stationary policies Γs, for

I-model-U and R-model-U, in this chapter. The constraint U(A(γ, q0)) ≥ uc is equivalent to having

the constraint A(γ, q0) ≥ U−1(uc), where U−1 is the inverse function of U . We note that since

the arrival rate is not the same for all γ ∈ Γs, minimization of the average queue length does not

directly correspond to minimizing the average delay of the packets. Asymptotic bounds on the

average delay can be derived using Little’s law and are discussed in this chapter.

5.7.2 Problem formulation for I-model-U and R-model-U

The general tradeoff problem that we consider is

minimize
γ∈Γ

Q(γ, q0) such that P (γ, q0) ≤ Pc and A(γ, q0) ≥ ρλ,

where 0 < ρ < 1. As in Section 4.2.1 we can show that if Pc > c(ρλ) for I-model-U or if

Pc > cR(ρλ) for R-model-U (which are the minimum average powers required for stability while

supporting an arrival rate of ρλ rather than λ) then there exists an optimal stationary policy γ∗

with stationary probability π∗. Therefore, we can restrict ourselves to the set of stationary policies.
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As for I-model and R-model, we consider the above tradeoff problem for a set of admissible policies

Γa. However, since there is admission control, we relax the irreducibility requirement (for I-model-U

and R-model-U) as follows. For an admissible policy γ, the Markov chain (Q[m],m ≥ 0) has a

single positive recurrent class Rγ which contains 0. Furthermore, the cumulative expected queue

cost as well as the cumulative expected power cost starting from any state q0 until Rγ is hit are

finite.

We note that for a γ ∈ Γa, Q(γ, q0) = Q(γ), P (γ, q0) = P (γ), and A(γ, q0) = A(γ). A policy γ is

defined to be admissible if: (i) the Markov process (Q[m],m ≥ 0) under γ is aperiodic and positive

Harris recurrent on a single recurrence class Rγ with stationary distribution π3, (ii) Q(γ) < ∞,

and (iii) s(q) is non-decreasing in q, where s(q) = EπHES|q,HS(q,H) is the average service rate at

queue length q. We note that for a γ ∈ Γa,

Q(γ) = EπQ,

P (γ) = EπEπHES|Q,HP (H,S(Q,H)),

A(γ) = EπEπHEREA(Q,R,H).

Let the average service rate be S(γ), then S(γ) = EπEπHES|Q,HS(Q,H).

The problem TRADEOFF that we consider is

minimize
γ∈Γa

Q(γ) such that P (γ) ≤ Pc and A(γ) ≥ ρλ.

The optimal value of TRADEOFF is denoted as Q∗(Pc, ρ). Suppose γ is feasible for TRADEOFF.

Then

S(γ) = A(γ) ≥ ρλ.

Now we note that P (γ) is bounded below by the optimal value of

minimize
γ∈Γa

EπEπHES|Q,HP (H,S(Q,H)),

such that EπEπHES|Q,HS(Q,H) ≥ ρλ. (5.10)

We note that EπEπHES|Q,HS(Q,H) = EπHEπES|Q,HS(Q,H). We have that EπHEπES|Q,HS(Q,H) =

EπHES|HS and EπEπHES|Q,HP (H,S(Q,H)) = EπHES|HP (H,S), where the conditional distribu-

tion of S given H depends on the policy γ. Then the optimal value of (5.10) is bounded below by

3We note that π(A) = 0 for any A 6⊂ Rγ

202



the optimal value of

minimize EπHES|HP (H,S),

such that EπHES|HS ≥ ρλ, (5.11)

where we minimize over all possible conditional distributions for S given h, irrespective of the policy

γ. We note that for I-model-U, these distributions have support on {0, . . . , Smax}, whereas for

R-model-U they have support on [0, Smax].

We note that (5.11) has feasible solutions only if ρλ ≤ Smax. The optimal value of the above

problem is c(ρλ) for I-model-U and cR(ρλ) for R-model-U, since the constraint is satisfied with

equality 4. So, we have that for γ ∈ Γa, P (γ) ≥ c(ρλ) for I-model-U and P (γ) ≥ cR(ρλ)

for R-model-U. Thus, TRADEOFF has feasible solutions only if Pc ≥ c(ρλ) for I-model-U and

Pc ≥ cR(ρλ) for R-model-U.

We now show that c(ρλ) and cR(ρλ) are both inf{γ:γ∈Γa,A(γ)≥ρλ} P (γ) for I-model-U and R-model-

U respectively. For I-model-U, we consider a sequence of policies γk, where for each γk, at each slot

m, each customer in the batch R[m] is admitted with probability ρ and dropped with probability

1−ρ. Then ∀γk we have that A(γk) ≥ ρλ. Now as for I-model, γk is such that P (γk) = c(ρλ)+Vk

and Q(γk) = O
(

1
Vk

)
. Thus, if ρλ < Smax, we have that there exists a sequence of admissible

policies γk, such that P (γk) = c(ρλ) + Vk, A(γk) ≥ ρλ, and Q(γk) = O
(

1
Vk

)
, for a sequence

Vk ↓ 0. For R-model-U, we choose A[m] = ρR[m], and then as for R-model, serve the customers

using a sequence of policies such that P (γk) = cR(ρλ) + Vk and Q(γk) = O
(

1
Vk

)
. Hence, c(ρλ)

and cR(ρλ) are inf{γ:γ∈Γa,A(γ)≥ρλ} P (γ) for I-model-U and R-model-U respectively.

In the following, we obtain an asymptotic characterization of Q∗(Pc, ρ) in the asymptotic regimes <
as Pc ↓ c(ρλ) for I-model-U and Pc ↓ cR(ρλ) for R-model-U, under the assumption that ρλ < Smax.

We recall that c(s) is a non-decreasing, piecewise linear, and convex function of s ∈ [0, Smax],

whereas cR(s) is a non-decreasing strictly convex function of s ∈ [0, Smax], with c(0) and cR(0)

both being 0.

5.7.3 Asymptotic bounds

We first obtain an asymptotic lower bound for R-model-U. We then outline the derivation of the

asymptotic lower bound for I-model-U, since it can be obtained using very similar techniques as for

R-model-U and as in Section 5.3.

We assume that R[1] satisfies the property:

4If the distribution which achieves the minimum in (5.11) is such that EπHES|HS > ρλ, then it is possible to
show that there exists another distribution which has a strictly smaller EπHES|HP (H,S).
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RA* : Pr
{
R[1] ≤ ∆

2

}
= ε′a > 0, for some ∆ such that 0 < ∆ < ρλ.

Let γ be an admissible policy with P (γ) − cR(ρλ) = V and A(γ) ≥ ρλ. For the policy γ, let

q1
∆
= sup {q : s(q) ≤ ρλ− ε}, for an ε chosen such that 0 < ε < ρλ−∆. We note that the average

power used when the queue length is q is EπHES|q,HP (H,S(q,H)), which is bounded below by the

optimal value of

minimize EπHES|HP (H,S),

such that EπHES|HS ≥ s(q), (5.12)

where we minimize over all possible conditional distributions for S given h, irrespective of γ. We

note that problem (5.12) is the same as (5.11) except that the constraint is s(q) instead of ρλ.

Therefore EπHES|q,HP (H,S(q,H)) ≥ cR(s(q)). Since EπEπHES|Q,HP (H,S(Q,H)) = P (γ), we

have that P (γ) ≥ EπcR(s(Q)). Therefore, EπcR(s(Q)) − cR(ρλ) ≤ P (γ) − cR(ρλ) ≤ V . Since

cR(.) is a strictly convex and non-decreasing function, we assume that the second derivative of

cR(s) is positive at s = ρλ. As S(γ) = Eπs(Q) ≥ ρλ, we have that

EπcR(s(Q)) = Eπ

[
cR(ρλ) +

dcR(x)

dx

∣∣∣∣
ρλ

(s(Q)− ρλ) +G(s(Q)− ρλ)

]

where G(x) is a strictly convex function as in [7, eq (41)], with G(0) = 0 and dG(x)
dx |x=0 = 0. Since

Eπs(Q) ≥ ρλ we have that

EπcR(s(Q))− cR(ρλ) ≥ EπG(s(Q)− ρλ).

Thus, we have that EπG(s(Q)− ρλ) ≤ V . Therefore, for q1 as defined before,∫ q1

0
G(s(q)− ρλ)dπ(q) ≤ V.

Since G(.) is strictly convex, for a positive a1 we have that

[∫ q1

0
(s(q)− ρλ)dπ(q)

]2

≤ V

a1
,

where a1 > 0. Since for q < q1, s(q) ≤ ρλ− ε, we have that

Pr {Q < q1} ≤
V

a1ε2
. (5.13)

Let S(q) be the random service batch size when in state q. We have that Pr {S(q) > s} =∫
h Pr {S(q, h) > s} dπH(h).

Lemma 5.7.1. For γ, for ∆ as in RA*, with q1 defined as above, we have that infq>q1 Pr {S(q) > ∆} ≥
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δs > 0, where δs = ρλ−ε−∆
Smax−∆ .

Proof. We note that q1 = sup {q : s(q) ≤ ρλ− ε}, for 0 < ε < ρλ−∆, where ∆ is as in RA*. Let

P (S(q)) denote the distribution of S(q). We note that by definition, ∀q > q1,

s(q) > ρλ− ε, or,∫ Smax

0
sdP (S(q)) ≥ ρλ− ε. (5.14)

Then, ∫ ∆

0
∆dP (S(q)) +

∫ Smax

∆
SmaxdP (S(q)) ≥ ρλ− ε,

∆ (1− Pr {S(q) > ∆}) + SmaxPr {S(q) > ∆} ≥ ρλ− ε, or,

P r {S(q) > ∆} ≥ ρλ− ε−∆

Smax −∆
.

Thus for any q > q1, Pr {S(q) > ∆} ≥ δs > 0, where δs = ρλ−ε−∆
Smax−∆ .

From the above result we have that q1 ≥ ∆.

Lemma 5.7.2. For any sequence of admissible policies γk such that A(γk) ≥ ρλ and P (γk) −
cR(ρλ) = Vk ↓ 0, we have that Q(γk) = Ω

(
log
(

1
Vk

))
.

Proof. Let us consider a particular policy γ in the sequence γk with Vk = V . As γ is admissible we

have that

Pr {0 ≤ Q < q1} =

∫ ∞
0

P (q, [0, q1))dπ(q),

where P (q,Q) is the transition kernel of the Markov chain. Hence, we have that

Pr {0 ≤ Q < q1} ≥
∫ q1+ ∆

2

q1

P (q, [0, q1))dπ(q),

≥ ε′aδsPr

{
q1 ≤ Q < q1 +

∆

2

}
,

where we have used Lemma 5.7.1 and the property RA* to lower bound Pr {Q[m+ 1] < q1|Q[m] = q}
by ε′aδs. Let ρa = ε′aδs. Also, for any q′ > q, let us denote Pr {q ≤ Q < q′} by π[q, q′).

Then we have obtained that

π[0, q1) ≥ ρaπ
[
q1, q1 +

∆

2

)
.

Similarly, we have that

π

[
0, q1 +

∆

2

)
≥ ρaπ

[
q1 +

∆

2
, q1 + 2

∆

2

)
,
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which can be written as

π[0, q1) + π

[
q1, q1 +

∆

2

)
≥ ρaπ

[
q1 +

∆

2
, q1 + 2

∆

2

)
,

π[0, q1)

[
1 +

1

ρa

]
≥ ρaπ

[
q1 +

∆

2
, q1 + 2

∆

2

)
.

By induction, for m ≥ 0, we have that

π[0, q1)

ρa

(
1 +

1

ρa

)m
≥ π

[
q1 +m

∆

2
, q1 + (m+ 1)

∆

2

)
.

Hence, we have that for m ≥ 0,

π

[
q1, q1 +m

∆

2

)
=


∑m−1

k=0 π
[
q1 + k∆

2 , q1 + (k + 1)∆
2

)
, if m > 0,

0, if m = 0,

≤ π[0, q1)

ρa

(
1 + 1

ρa

)m
− 1

1 + 1
ρa
− 1

= π[0, q1)

[(
1 +

1

ρa

)m
− 1

]
. (5.15)

Since Pr {Q < q1} ≤ V
a1ε2

(from (5.13)), if m is the largest integer such that

π [0, q1) + π

[
q1, q1 +m

∆

2

)
≤ 1

2
,

then Q(γ) ≥ m∆
4 . Suppose m1 is the largest integer such that

π [0, q1) + π[0, q1)

[(
1 +

1

ρa

)m1

− 1

]
= π [0, q1)

(
1 +

1

ρa

)m1

≤ 1

2
. (5.16)

Then m1 ≤ m. Using (5.13), if m2 is the largest integer such that(
1 +

1

ρa

)m2

≤ a1ε
2

2V
, or ,

m2 ≤ log(
1+ 1

ρa

)(a1ε
2

2V

)
,

then m2 ≤ m1. We have that

m2 =

⌊
log(

1+ 1
ρa

)(a1ε
2

2V

)⌋
.

Since Q(γ) ≥ m∆
4 ≥

m1∆
4 ≥ m2∆

4 , we obtain that

Q(γ) ≥ ∆

4

(
log(

1+ 1
ρa

)(a1ε
2

2V

)
− 1

)
.
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So for the sequence of policies γk with Vk ↓ 0 we have that Q(γk) = Ω
(

log
(

1
Vk

))
.

We now outline the derivation of an asymptotic lower bound for I-model-U in the regime <. The

analysis of I-model-U proceeds in a similar fashion as in Section 5.3; the piecewise linear function

c(λ) and the quantities ap, p ≥ 1 are similarly defined. The three cases which then arise are : (1)

0 < ρλ < a2, (2), ap < ρλ < ap+1, p > 1, and (3) ρλ = ap, p > 1. For Cases 2 and 3, proceeding

similarly as in the proof of Lemma 5.3.1, it is possible to show that, for any sequence of admissible

policies γk such that A(γk) ≥ ρλ and P (γk)−c(ρλ) = Vk ↓ 0, we have that Q(γk) = Ω
(

log
(

1
Vk

))
.

We note that we do not have any asymptotic results for Case 1, although numerically it can be

shown that Q∗(Pc) <∞ even if Pc = c(ρλ).

Remark 5.7.3. We note that a similar logarithmic asymptotic lower bound can be obtained for a

different class of admissible policies. The difference is in the definition of the monotonicity property.

For this new class of admissible policies, the average drift ES(q,H) - EA(q,R,H) is assumed to

be monotonically non-increasing in q.

Remark 5.7.4. We comment on an asymptotic upper bound for TRADEOFF, which is achieved by

the sequence of Dynamic Packet Dropping (DPD) policies in [44]. A DPD policy is parametrized

by the quantities β, ε, ω, and q. The policy chooses a batch size sDPD[m] in each slot where

sDPD[m] = min

(
arg max

s∈{0,··· ,Smax}

[
s
{
X[m− 1]− ωeω(q−Q[m−1])

}
− βP (H[m], s)

]
, Q[m− 1]

)
,

where (X[m]) is a virtual queue which evolves according to

X[m] = max (X[m− 1]− sDPD[m], 0) + (ρ+ ε)R[m].

For the DPD policy, through admission control, the queue length process (Q[m],m ≥ 0) evolves as

Q[m] = min [q,Q[m− 1]− sDPD[m] +R[m]] ,

We note that A[m] = R[m] whenever Q[m] ≤ q, otherwise only that fraction of R[m] is admitted

so that Q[m] = q. We note that A(q, r, h) for this DPD policy, is a function only of the current

queue length q and the current number of arrivals r.

From Theorem 1 [44], if 0 < ω and ωeωSmax ≤ λ(1−ρ−ε)
σ2 , ε = 1−ρ

2β , B = S2
max+(ρ+ε)2A2

max
2 + 1,

x ≥ 4SmaxeωSmaxB
λ2ω(1−ρ−ε)(1−ρ)

, and q = log(xβ)
ω , then for the sequence of policies γ obtained by a sequence

β ↑ ∞, we have that Q(γ) = O(log(β)), P (γ) = cR(ρλ) +O
(

1
β

)
, and A(γ) ≥ ρλ.

We note that DPD policies are not stationary, since each policy depends on an auxiliary state X[m].

However, as noted in [44, Section III], using a sequence of admissible policies which are obtained

from the admissible Positive-Drift Algorithm in [44] by choosing the parameter Q as log
(

1
V

)
, where
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V ↓ 0, it can be shown that the above tradeoff is achievable. Therefore, the asymptotic lower

bound derived in Lemma 5.7.2 is tight.

5.7.4 Discussion

Minimization of average delay: When average delay is the performance measure under consid-

eration, then the problem that we are interested in is

minimize
γ∈Γa

Q(γ)

A(γ)
such that P (γ) ≤ Pc and A(γ) ≥ ρλ.

Let the optimal value of the above problem be D∗(Pc, ρ).

We note that, since c(s) or cR(s) is a convex and non-decreasing function in s ∈ [0, Smax], for any

admissible policy γ, if γ is feasible for the above problem, we have that

Eπc(s(Q)) ≤ P (γ) ≤ Pc,

c(Eπs(Q)) ≤ Pc, or,

S(γ) = Eπs(Q) ≤ c−1(Pc),

where c−1 is the inverse function of c for I-model-U. Consider any sequence Pc,k ↓ c(ρλ) as k ↑ ∞.

Since A(γ) = S(γ), the objective function in the above optimization problem can be bounded

above by Q(γ)
ρλ and bounded below by Q(γ)

c−1(Pc,1)
. A similar bound can be obtained for R-model-U.

Then, it follows that the asymptotic behaviour of D∗(Pc,k, ρ) is the same as that of Q∗(Pc,k, ρ) as

Pc,k ↓ c(ρλ) for I-model-U and Pc,k ↓ cR(ρλ) for R-model-U.

Relation to the asymptotic order optimal tradeoff in [42]: Neely [42] considers a system,

with both admission control and service rate control, in which the arrival rate λ is larger than the

maximum service rate Smax. The objective is to obtain a sequence of policies γk which achieve an

order optimal minimum average queue length Q(γk) as the average utility U(S(γk)) approaches the

maximum utility value umax = U(Smax). We note that there is no cost associated with the service

of packets in [42]. It is shown that for any sequence of policies γk such that umax − U(S(γk)) =

Vk ↓ 0, Q(γk) = Ω
(

log
(

1
Vk

))
. A sequence of policies γk such that Q(γk) = O

(
log
(

1
Vk

))
and U(S(γk)) = umax − Vk is also obtained. We note that as the utility function is assumed to

be strictly concave and increasing, the throughput value that maximizes the utility is Smax itself.

For any sequence γk, if U(γk) ↑ umax = U(Smax) it can be shown that the probability of using

a service rate less than Smax decreases to zero. That is, with q1
∆
= sup {q : s(q) ≤ Smax − ε},

Pr {Q < q1} ↓ 0. Therefore, the proof of Lemma 5.7.2 can be applied to obtain an alternate proof

for the asymptotic logarithmic lower bound on the average queue length obtained in [42], but for

admissible policies.
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Asymptotic bounds for a model with just admission control: We consider a queueing model

in which there is no service batch size control and no service cost. The queue evolution is assumed

to be as follows:

Q[m+ 1] = max(Q[m]− sb, 0) +A[m+ 1],

where A[m+ 1] ≤ R[m+ 1] and sb ≤ Smax is a fixed batch size. The queue evolution is assumed

to be on Z+. We assume that ER[1] = λ > sb. We consider the case with a single fade state.

We consider the tradeoff of average queue length and average throughput in the asymptotic regime

where the average throughput approaches its maximum value sb.

As in the previous sections, we consider this tradeoff problem for a class of admissible policies Γa.

An admissible policy for this problem is a stationary policy which is stable (as defined in Section

5.7.2). However, we note that there is no service batch size control, and it is assumed that the

average admitted rate at a queue length q, a(q) = EA(q,R) is a non-increasing function of q. The

tradeoff problem that we consider is:

minimize
γ∈Γa

Q(γ) such that A(γ) ≥ tc. (5.17)

We note for any admissible policy γ, A(γ) ≤ sb. Consider a sequence of policies γk defined as

follows. A policy γk, in slot m, admits a packet from the batch of size R[m] with probability ρk or

rejects the packet with probability 1−ρk. Let the sequence ρk
∆
= sb−Vk

λ , for a sequence Vk ↓ 0. Since

A(γk) = ρkλ < sb we have that γk is a sequence of admissible policies with A(γk) ↑ sb. Therefore,

we have that sb = supγ∈Γa A(γ). We consider the tradeoff problem (5.17) in the asymptotic regime

< where tc ↑ sb.

We have the following asymptotic lower bound.

Lemma 5.7.5. For any sequence of admissible policies γk, with sb−A(γk) = Vk ↓ 0, we have that

Q(γk) = Ω
(

log
(

1
Vk

))
.

Proof. Consider a policy γ in the sequence γk with sb − A(γ) = V . Since S(γ) = A(γ), we have

that

(sb − 1)Pr {s(Q) 6= sb}+ sbPr {s(Q) = sb} ≥ sb − V, or,

Pr {s(Q) 6= sb} = Pr {s(Q) < sb} ≤ V.

We note that s(q) = min(q, sb).

We now proceed as in the proof of Lemma 4.3.8, but with the following changes. We define qs to

be sb. Then, we have that Pr {Q < qs} = Pr {s(Q) < sb} ≤ V .
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Now we obtain a geometric upper bound on π(q) for q ≥ qs as in the proof of Lemma 4.3.5. We

note that for q ≥ qs, we have that

Pr {Q[m+ 1] < q|Q[m] = q} ≥ Pr {A[1] = 0} ,

since s(q) = sb. Therefore, with ρd redefined to be just Pr {A[1] = 0} in the proof of Lemma

4.3.5, we obtain that π(q) ≤ Pr {Q < qs} ρ
k

ρd
for q = qs + k and k ≥ 0. Now proceeding as in the

proof of Lemmas 4.3.5 and 4.3.8, we have that for the sequence γk, Q(γk) = Ω
(

log
(

1
Vk

))
.

We note that this model is the discrete time equivalent of INTERVAL-λCHOICE. The problem

considered here corresponds to INTERVAL-λCHOICE-2-1.

5.8 Single hop networks

In this section, we illustrate how asymptotic lower bounds for the tradeoff of average power and total

average queue length can be derived for a system with N source destination pairs communicating

over single hop links. For example, this could be a N user multiple access or N user broadcast

channel. The model and the associated tradeoff problem that we consider is motivated by Neely

[43], who considered the problem of optimally trading off average power with average delay for a

wireless downlink system, with no admission control.

5.8.1 System model

We first consider a model with real-valued queue evolution. We note that the model for the sin-

gle hop network, with no admission control, is a straightforward extension of R-model in Section

5.1.3. We assume that there is an IID arrival process (An[m],m ≥ 1) to the queue for the nth

link, n ∈ {1, . . . , N}. We assume that An[m] ≤ Amax,∀n. The arrival processes to different

links are assumed to be independent of each other. The nth link is subjected to an IID fad-

ing process (Hn[m],m ≥ 1). The fading processes are assumed to be independent across links.

The queue length at the start of the mth slot for the nth link is denoted as Qn[m − 1]. In the

following, we use the notation X to denote the vector (X1, X2, · · · , XN ). The arrival rate vec-

tor is λ = (EA1[1],EA2[1], · · · ,EAN [1]). The fade state is assumed to take values in H, with

min
{

minn∈{1,...,N}
{
h2
n

}
,h ∈H

}
> 0. The distribution of the fade state is denoted as πH and

the expectation with respect to this distribution as EπH . We assume that |H| <∞.

In each slot m, a service batch size vector S[m] is chosen as a randomized vector function S(Q[m−
1],H[m]) of the current queue length vector Q[m − 1] and the current fade state vector H[m].

We assume that Sn[m] ≤ Smax, ∀n,m. A policy γ is the choice of the randomized function
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S(q,h), ∀q,h. The evolution of the N queues under γ is given by:

Q[m+ 1] = Q[m]− S[m+ 1] +A[m+ 1], (5.18)

with Q[0] = q0. We note that the process (Q[m]) is a Markov process evolving on RN+ . The use

of the service vector s incurs a power P (h, s) when the fade state is h. Similar to the properties

(C1) and (C2), we assume that for every h, P (h,0) = 0 and P (h, s) is a strictly convex function

of s,∀s ∈ [0, Smax]N . These assumptions can be motivated by the properties of P (h, s) obtained

in [6, Chapter 7]. The average power P (γ, q0) and total average queue length Q(γ, q0) are defined

as:

P (γ, q0)
∆
= lim

M→∞

1

M
E

[
M∑
m=1

P (H[m],S[m])

∣∣∣∣∣Q[0] = q0

]
,

Q(γ, q0)
∆
= lim

M→∞

1

M
E

[
M−1∑
m=0

N∑
n=1

Qn[m]

∣∣∣∣∣Q[0] = q0

]
.

5.8.2 Problem formulation

We study the tradeoff of P (γ, q0) with Q(γ, q0) for a restricted set Γa of admissible policies. A

policy γ is admissible if (i) it is stable with stationary distribution π(q) (where stability is defined

similarly as in Section 5.2), and (ii) instead of property G2, γ is such that

MG2 : the average service rate for queue n as a function of its queue length, sn(q) is non-decreasing

in q.

For example, for N = 2 and for the first queue, for an admissible policy γ we require that s1(q1) =

EQ2|q1EπHES1|q1,Q2,HS1 is non-decreasing in q1. We note that for a γ ∈ Γa, P (γ, q0) = P (γ) and

Q(γ, q0) = Q(γ). As for the single link case, we study TRADEOFF for the single hop network,

defined as:

minimize
γ∈Γa

Q(γ), such that P (γ) ≤ Pc.

We define the function cR(λ) as the optimal value of

minimize EπHES|HP (H,S), (5.19)

such that EπHES|HS = λ.

We note that cR(λ) is similar to cR(λ) for the single link case. From [43], we have that cR(λ) =

infγ∈Γa P (γ), and cR(λ) is a strictly convex function of λ, for λ ∈ [0, Smax)N , with cR(0) = 0.

We now derive an asymptotic lower bound on the average queue length Q(γk) for any sequence

of admissible policies γk for which P (γk)− cR(λ) ↓ 0. We note that the multiuser Berry-Gallager

asymptotic lower bound [43, Theorem 2], is rederived in the following, with the extra assumption
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MG2. The method of derivation illustrates how the asymptotic lower bounding technique can be

extended to network scenarios. For ease of exposition, the asymptotic lower bound is derived for

the case N = 2, but can be extended to any finite N .

5.8.3 Asymptotic lower bound

We assume that An[1] satisfies

MA1 : Pr {An[1]− Smax > δn,a} > εn,a, for some positive δn,a and εn,a, ∀n.

We first obtain a lower bound on the marginal stationary probability Pr {Q1 ≥ q} =
∫∞
q2=0

∫∞
q1=q dπ(q1, q2)

of the two-dimensional Markov process, which is similar to Lemma 4.4.1. The lower bound on the

marginal stationary probability is obtained for the first queue, but can be obtained for the second

queue also by interchanging the indices of the two queues.

Lemma 5.8.1. Let (Q[m],m ≥ 0) be as in (5.18), evolving on R2
+, with stationary probability π,

for a γ ∈ Γa. Suppose there exists a q1,d such that

∀q1 ∈ [0, q1,d],EQ2,H

[
E
[
Q1[m+ 1]−Q1[m]

∣∣∣∣Q2[m],H[m+ 1], Q1[m] = q1

] ]
≥ −d,

where d is positive. Then for any q̄1, k ≥ 0, ∆ > 0, δ > 0, ∆ + δ < δ1,a, and 0 ≤ q̄1 + k∆ ≤ q1,d,

Pr {Q1 ≥ q̄1 + k∆} ≥
(

δε1,a
δε1,a + d

)k
Pr {Q1 ≥ q̄1}

+

[
1−

(
δε1,a

δε1,a + d

)k][
Pr {Q1 ≥ q1,d}+

1

d

∫ ∞
q1,d

(λ1 − s̄1(q1))dπ(q1)

]
,

where π(q1) is the marginal probability distribution of q1.

The proof is very similar to that of Lemma 4.4.1 and is presented in Appendix 5.C. Utilizing the

above lower bound, we obtain the following result which is the extension of Lemma 5.4.1 to single

hop networks. As for the single link case, we first express the average power P (γ) in terms of the

function cR(s). We note that the average power used when the queue length vector is q is bounded

below by the optimal value of

minimize EπHES|HP (H,S),

such that EπHES|HS = (s1(q1), s2(q2)).

By definition, the optimal value of the above problem is cR(s1(q1), s2(q2)). Then, we note that

EπcR(s1(Q1), s2(Q2)) ≤ P (γ). Furthermore, since cR(.) is convex, EπcR(s1(Q1), s2(Q2)) ≥
cR(λ).
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Proposition 5.8.2. For any sequence of admissible policies γk with P (γk)− cR(λ1, λ2) = Vk ↓ 0,

we have that Q(γk) = Ω
(

1√
Vk

)
.

Proof. We note that for the sequence γk, since P (γk)−cR(λ) = Vk, we have that EπcR(s1(Q1), s2(Q2))−
cR(λ) = Uk ↓ 0, with Uk ≤ Vk. Consider a particular policy γ in the sequence γk with Uk = U .

Let q1,d = sup {q1 : s̄1(q1) ≤ λ1 + εU}, where εU will be chosen later. From the admissibility of γ

we have that ∀q ≤ q1,d, s̄1(q1) ≤ λ1 + εU . Assume that qd < ∞. Using d = εU in Lemma 5.8.1,

we have for a 0 < ∆ + δ < δa, k ≥ 1, and q̄1 = k∆ ≤ q1,d

Pr {Q1 ≥ q̄1} ≥
(

δε1,a
δε1,a + εU

)k
+

[
1−

(
δε1,a

δε1,a + εU

)k][
Pr {Q1 ≥ q1,d}+

1

εU

∫ ∞
q1,d

(λ1 − s̄1(q1))dπ(q1)

]
.

Or we have that

Pr {Q1 < q̄1} ≤

(
1−

(
δε1,a

δε1,a + εU

)k)[
1− 1

εU

∫ ∞
q1,d

(λ1 − s̄1(q1))dπ(q1)

]
,

where we have used the non-negativity of Pr {Q1 ≥ q1,d}. Let Dt
∆
= 1

εU

∫∞
q1,d

(s̄1(q1)−λ)dπ(q). For

γ we have that EπcR(s1(Q1), s2(Q2))−cR(λ) = U . Let l(s1, s2) be the tangent plane to cR(s1, s2)

at (λ1, λ2). Then U = Eπ [cR(s1(Q1), s2(Q2))− l(s1(Q1), s2(Q2))], since Eπl(s1(Q1), s2(Q2)) =

cR(λ). Let G(x1, x2)
∆
= cR(x1, x2) − l(x1, x2). We note that G(x1, x2) is strictly convex in x1

and x2. Also G(0, 0) = 0 and ∂G
∂x1

(0, 0) = ∂G
∂x2

(0, 0) = 0. Proceeding as in steps (42)-(46) in [43,

Appendix A] we obtain similarly as in the proof of Lemma 4.4.2 that

Dt ≤
1

εU

√
U

a1
, (5.20)

for a positive a1. We choose εU = 4
√

U
a1

. Let k1 be the largest integer such that

(
1−

(
δε1,a

δε1,a + εU

)k1
)[

1− 1

εU

∫ ∞
q1,d

(λ1 − s̄1(q1))dπ(q1)

]
≤ 1

2
.

Then Pr {Q1 < k1∆} ≤ 1
2 and Q(γ) ≥ EπQ1 ≥ k1∆

2 . The same approach also holds if qd = ∞.

The rest of the proof is similar to that of Proposition 4.4.2 and we obtain that k1 = Ω
(

1√
U

)
, for

small U . Therefore, Q(γk) = Ω
(

1√
Uk

)
= Ω

(
1√
Vk

)
, since Uk ≤ Vk.

We note that the proof of the above lemma illustrates how the lower bounding technique can be

applied to a multiqueue case by considering each queue on its own, even though the service vector

S(Q,H) is chosen as a function of the queue length vector Q. The proof depends on the upper

bound on the marginal stationary probability of a particular queue, which can be obtained from the

average drift for that queue, conditioned on its own queue length rather than on the queue length

vector.
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5.8.4 Discussion
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Figure 5.12: Illustration of c(λ1, λ2) as a function of the arrival rates λ1 and λ2.

Model with integer valued queue evolution: We note that a single hop queueing network

model with N users can be set up similarly as above, where (A[m],m ≥ 1), (S[m],m ≥ 1), and

(Q[m],m ≥ 0) are assumed to evolve on ZN+ . Similar to the function c(λ) defined for the single link

case, a function c(λ) (which is the counterpart of cR(λ)) can be obtained as the optimal solution

of the problem (5.19), but with the conditional distributions of service batch sizes having support

on {0, 1, · · · , Smax}. We note that c(λ) has a polyhedral structure [43, Section VII] (we recall that

c(λ) was piecewise linear). Then several cases may arise, e.g., for N = 2 we have the following

cases, which are illustrated in Figure 5.12 : (1) λ lies on the interior of a face of c(λ1, λ2) of type

F1, which includes 0 (which corresponds to case 1 for the single link case), (2) λ lies on the interior

of a face of c(λ1, λ2) of type F2, not including 0 (which corresponds to Case 2 for the single link

case), (3) λ lies on a vertex V (not 0) (which corresponds to Case 3 for the single link case), and

(4) λ lies on an edge, which is (i) of type E2, having a projection on the (λ1, λ2) plane which is

perpendicular to the λ2 (or λ1) axis or (ii) of type E1, having a projection on the (λ1, λ2) plane

which is not perpendicular to either the λ1 or λ2 axes.

We again consider the TRADEOFF problem for this model in the asymptote of small V , where V is

the difference between Pc and c(λ). As illustrated in the proof of Proposition 5.8.2, the asymptotic

lower bound for the total average queue length can be obtained by separate lower bounds on the

average queue lengths of the individual queues. Therefore, we expect that the asymptotic lower

bounds for Cases 2 and 3 can be obtained from straightforward extensions of Lemmas 5.3.1 and

5.3.5 respectively. As for the single-link case, we do not have any analytical results for Case 1.

For case 4(i) we expect that the total average queue length will grow as Ω
(

1
V

)
since the probability

of the average service rate s2(Q) being not equal to the arrival rate λ2 should go to zero as V ↓ 0.

We note that in case 4(i) the average queue length of the first queue is expected to grow as
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Ω
(
log
(

1
V

))
since the probability of the average service rate s1(Q) being greater than the arrival

rate λ1 does not go to zero in the asymptote of small V . We note that for the case of integer

valued queue evolution, different queues may have different growth rates in the asymptote of small

V .

For case 4(ii) we expect that the total average queue length will grow as Ω
(
log
(

1
V

))
, since the

probability of the average service rate s1(Q) and s2(Q) being greater than λ1 and λ2 respectively

is positive as the average power constraint approaches c(λ1, λ2).

Model with admission control: We now comment on how the asymptotic lower bound can be

derived for a N user model as above, but with admission control. We consider a model, which is a

straightforward extension of R-model-U to the N user case.

We assume that the arrival rate vector into the system is R[m] in slot m, with ER[1] = λ.

For stationary policies, the number of packets admitted into the queue is a function A(Q[m −
1],R[m],H[m]). For an admissible policy, defined as above, the average throughput is A(γ) =

EπEπHEREA(Q,R,H). The problem that we are interested in is:

minimize
γ∈Γa

Q(γ), such that P (γ) ≤ Pc and A(γ) ≥ ρλ,

for a ρ < 1. Similar to the single link case, it can be shown that infγ∈Γa P (γ) = cR(ρλ). Then

under the assumption that ∀n ∈ {1, . . . , N}, Pr
{
Rn[1] ≤ ∆n

2

}
= ε′a,n > 0 for some ∆n such

that 0 < ∆n < ρλn we can proceed as in the proof of Lemma 5.7.2 to prove that EπQn =

Ω
(

log
(

1
Vk

))
, ∀n, for any sequence of admissible policies γk with P (γk) − cR(ρλ) = Vk ↓ 0.

Therefore, the total average queue length Q(γk) is also Ω
(

log
(

1
Vk

))
.

Similar results can be obtained for the case where the queue evolution is assumed to be integer

valued, whenever (λ, c(λ)) does not lie on a face which contains (0,0).

5.9 Conclusions

We recall that R-model and R-model-U, both with strictly convex P (h, s) functions, are usually used

as approximations for I-model and I-model-U respectively. However, as in Chapter 4, we find that

the asymptotic behaviours of Q∗(Pc) in the asymptotic regimes < are different for the approximate

models and the original models.

We note that the R-model suggests that a strictly smaller minimum average power cR(λ) is sufficient

for stability, compared with c(λ) for the I-model, for all λ 6= ap, p > 1. From Lemma 5.3.5, we

observe that the asymptotic behaviour of the minimum average queue length is quite different for

the I-model and R-model, for λ = ap, p > 1, for which cR(λ) = c(λ). For such a λ, for the
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R-model, from Lemma 5.4.1, we have that the minimum average queue length is Ω
(

1√
V

)
, if (a)

the average power is V more than the minimum average power cR(λ) and (b) P (h, s) is a strictly

convex function of s ∈ [0, Smax], for every h ∈ H. In contrast, for the I-model, the asymptotic lower

bound in Lemma 5.3.5 shows that the minimum average queue length is Ω
(

1
V

)
. We note that the

minimum average queue length for the R-model is always a lower bound to the minimum average

queue length obtained from the I-model, for a given constraint on the average power, but the rate

of increase of the minimum average queue length as the average power constraint is reduced is

strictly smaller.

For Case 1, we find that the Q∗(Pc) for R-model (as well as R-model-U) increases to infinity in

the regime <, while for I-model we have numerically illustrated that Q∗(c(λ)) <∞ (therefore, also

for I-model-U). However, for R-model (as well as R-model-U), if we use a piecewise linear P (h, s)

function (as in Section 4.4.2), which is the lower convex envelope of the service cost function

defined for the I-model (as well as I-model-U) on {0, . . . , Smax}, then the asymptotic behaviour of

both the R-model (R-model-U) and I-model (I-model-U) matches. Therefore, a more appropriate

approximation for I-model (or I-model-U), is a R-model (or R-model-U) with the above piecewise

linear P (h, s) function.

We note that Lemma 5.3.1 provides the asymptotic lower bound to the O
(
log
(

1
V

))
upper bound

observed by Neely in [43, Corollary 2] for the I-model. This asymptotic lower bound was earlier

shown only for a specific example ([43, Section VII-A]). We note that if (A[m]) and (H[m]) are

ergodic sequences, independent of each other, then for Cases 2 and 3 for the I-model, we have

obtained a Ω
(
log
(

1
V

))
asymptotic lower bound on the minimum average queue length in Lemma

5.6.1. As stated, for Case 1, if |H| > 1, we do not have tight asymptotic upper or lower bounds

on Q∗(Pc), as Pc ↓ c(λ). Lemma 5.7.2 provides an asymptotic lower bound for R-model-U even

if |H| > 1, for admissible policies, while earlier an asymptotic lower bound was obtained only for

the case |H| = 1. We also illustrate how the asymptotic lower bound can be obtained for a N user

single hop network and identify a case in which average queue lengths for different queues can have

different asymptotic behaviours for integer valued queue evolution.
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Appendices

5.A The function c(λ) in Section 5.2

In this section, we show that the function c(λ) defined as the optimal value of

minimize EπHES|HP (H,S),

such that EπHES|HS = λ,

is piecewise linear if |H| is finite. Let ps|h be the conditional distribution of the batch size s given

the fade state h. Then the above problem can be written as

minimize
∑
h

πH(h)

Smax∑
s=0

ps|hP (h, s),

such that
∑
h

πH(h)

Smax∑
s=0

ps|hs = λ,

Smax∑
s=0

ps|h = 1, ∀h, and ps|h ≥ 0,∀s, h,

which is a linear program in the variables ps|h.

For ease of exposition, in the following we consider the case where |H| = 2, but the approach

holds for any finite |H|. Let s = (0, 1, . . . , Smax), P (hi, s) = (P (hi, 0), . . . , P (hi, Smax)), ps|h =

(p0|h, . . . , pSmax|h), and let 1 be a row vector of all ones and 0 a row vector of all zeros, both of

size Smax. Then the above linear program can be written as

minimize [πH(h1)P (h1, s), πH(h2)P (h2, s)]

[
pts|h1

pts|h2

]

such that


πH(h1)s πH(h2)s

1 0

0 1


[
pts|h1

pts|h2

]
=


λ

1

1

 ,
and ps|h ≥ 0, ∀s, h.

We note that the dual of this problem is

maximize [y1, y2, y3]


λ

1

1



such that [y1, y2, y3]


πH(h1)s πH(h2)s

1 0

0 1

 ≤ [πH(h1)P (h1, s), πH(h2)P (h2, s)],
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where y1, y2, y3 ∈ R. Let y∗1(λ), y∗2(λ), and y∗3(λ) be any optimizers for the dual for λ ∈ [0, Smax].

Since c(λ) is convex in λ ([43]), it is differentiable at all λ ∈ [0, Smax] except for λ ∈ D, where

D is at most countable [20]. Now consider c(λ) for a λ 6∈ D. Then we have that dc(λ)
dλ is well

defined. Furthermore, since strong duality holds for the linear programs above, we also have that
dc(λ)
dλ = −y∗1(λ) [14, Section 5.6]. Therefore, for λ 6∈ D, y∗1(λ) is unique.

We note that the constraint set in the dual problem does not depend on λ and has finite number of

vertices. Therefore, there are only finitely many ways in which y∗1(λ) can be unique. Hence, dc(λ)
dλ

can take only finitely many values. Since c(λ) is also non-decreasing in λ, we have that c(λ) is

piecewise linear. We note that the above approach generalizes to any finite H.

5.B Proof of Lemma 5.3.2

Let L(q)
∆
= eω(qv−q) be a Lyapunov function. Since for the policy γ, the batch size S̃(q) could be

more than q, the queue evolution equation under γ is written as

Q[m+ 1] = max(Q[m]− S̃(Q[m]), 0) +A[m+ 1].

The expected Lyapunov drift is

∆(q)
∆
= E [L(Q[m+ 1])− L(Q[m])|Q[m] = q] .

We note that the randomness in S̃(q) arises from both the randomness in the fade state as well

as the randomization of the batch size. The expectation of S̃(q) is therefore with respect to this

distribution. Proceeding as in the proof of Lemma 4.G we have that

∆(q) ≤ ωeω(qv−q)
[
(ES̃(q)− λ) +K

]
.

where K = ωA2
max
2 eωAmax .

Now by definition, the policy γ is such that

ES̃(q) =

sl, for 0 ≤ q < qv,

su, for qv ≤ q.

Then we have that for q < qv

∆(q) ≤ −ωeω(qv−q) [λ− sl −K] .
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And for q ≥ qv,

∆(q) ≤ ωeω(q−qv) [(su − λ) +K] ,

= −ωeω(qv−q) [λ− sl −K] + ωeω(qv−q) [su − sl] ,

≤ −ωeω(qv−q) [λ− sl −K] + ω [su − sl] ,

Hence, for all q we have that

∆(q) ≤ −ωeω(qv−q) [λ− sl −K] + ω [su − sl] .

We choose ω such that K < λ − sl. Proceeding as in the proof of [43, Theorem 3(c)], we have

that

Eeω(qv−Q) ≤ [su − sl]
(λ− sl −K)

.

Since Eeω(qv−Q) ≥ E
[
eω(qv−Q)|Q < Smax

]
Pr {Q < Smax}, we therefore have that

Pr {Q < Smax} ≤ e−ωqv
eωSmax [su − sl]
(λ− sl −K)

. (5.21)

Now we note that

P (γ) = Pr {Q < Smax}E [P (H,S)|Q < Smax] +

Pr {Smax ≤ Q < qv}E [P (H,S)|Smax < Q < qv] + Pr {qv ≤ Q}E [P (H,S)|qv ≤ Q] .

We note that for γ, for Smax ≤ q < qv, EP (H,S) = c(sl) and for q ≥ qv, EP (H,S) = c(su).

Furthermore for q < Smax, EP (H,S) ≤ c(sl). Hence, we have that

P (γ) ≤ Pr {Q < Smax} c(sl) + Pr {Smax ≤ Q < qv} c(sl) + Pr {qv ≤ Q} c(su).

Proceeding as in the proof of Lemma 4.3.10 we have that

P (γ)− c(λ) ≤ [c(sl) +mλ− c(λ)]Pr {Q < Smax} ,

where m is the slope of l(s).

Now consider the sequence of policies γk for which qv = log
(

1
Vk

)
for a sequence Vk < 1 such that

Vk ↓ 0. Then we have that P (γk)− c(λ) = O(Vk). Furthermore, from Proposition 4.F.1 we have

that Q(γ) = O
(

log
(

1
Vk

))
. We note that γk is also a sequence of admissible policies, since s(q)

is a non-decreasing function of q and Q(γk) <∞.
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5.C Proof of Lemma 5.8.1

Proof. Define Q̂1[m] = max(q̄1, Q1[m]) and Q̂1 = max(q̄1, Q). As the policy is admissible and q̄1

is finite we have that EπQ̂ <∞. Therefore∫
q1,q2

E
[
Q̂1[m+ 1]− Q̂1[m]

∣∣∣Q1[m] = q1, Q2[m] = q2

]
dπ(q1, q2) = 0.

We split the integral over q1 into three terms which leads to :

0 =

∫ q̄1−∆

0

∫ ∞
0

E
[
Q̂1[m+ 1]− Q̂1[m]

∣∣∣Q1[m] = q1, Q2[m] = q2

]
dπ(q2|q1)dπ(q1) (5.22)

+

∫ q̄1

q̄1−∆

∫ ∞
0

E
[
Q̂1[m+ 1]− Q̂1[m]

∣∣∣Q1[m] = q1, Q2[m] = q2

]
dπ(q2|q1)dπ(q1)(5.23)

+

∫ ∞
q̄1

∫ ∞
0

E
[
Q̂1[m+ 1]− Q̂1[m]

∣∣∣Q1[m] = q1, Q2[m] = q2

]
dπ(q2|q1)dπ(q1) (5.24)

We note that for q1 ≤ q̄1 − ∆, (5.22) ≥ 0. Consider (5.24), for which Q̂1[m] = Q1[m] and

Q̂1[m+ 1] ≥ Q1[m+ 1]. Therefore

(5.24) ≥
∫ ∞
q̄1

(λ1 − s̄1(q1))dπ(q1).

Using the assumption MG3, the above integral can be further bounded below by

−dPr {q̄1 ≤ Q1 < q1,d}+

∫ ∞
q1,d

(λ1 − s̄1(q1))dπ(q1).

Consider (5.23), we have that Q̂1[m+ 1]− Q̂1[m] ≥ 0 for q1 ∈ [q̄1 −∆, q̄1]. Hence as in the proof

of Lemma 4.4.1 we use Markov inequality to lower bound (5.23).

E
[
Q̂1[m+ 1]− Q̂1[m]|Q1[m] = q1, Q2[m] = q2

]
≥ δ Pr

{
Q̂1[m+ 1]− Q̂1[m] ≥ δ

∣∣∣Q1[m] = q1, Q2[m] = q2

}
,

≥ δPr {Q1[m+ 1]−Q1[m] ≥ δ + ∆|Q1[m] = q1, Q2[m] = q2} ,

≥ δε1,a,

where ∆ > 0 and δ > 0 are chosen such that ∆ + δ < δ1,a. Thus we obtain that

(5.23) ≥ δε1,aPr {q̄1 −∆ ≤ Q1 < q̄1} .

Combining the obtained lower bounds on (5.22), (5.23), and (5.24) we obtain that

0 ≥ δε1,aPr {q̄1 −∆ ≤ Q1 < q̄1} − dPr {q̄1 ≤ Q1 < q1,d}+

∫ ∞
q1,d

(λ1 − s̄1(q1))dπ(q1),

= δε1,aPr {Q1 ≥ q̄1 −∆} − (d+ δεa)Pr {Q1 ≥ q̄1}+ dPr {Q1 ≥ q1,d}+

∫ ∞
q1,d

(λ1 − s̄1(q1))dπ(q1).
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Hence

Pr {Q1 ≥ q̄1} ≥
δε1,a

δε1,a + d
Pr {Q1 ≥ q̄1 −∆}+

1

δε1,a + d

[
dPr {Q1 ≥ q1,d}+

∫ ∞
q1,d

(λ1 − s̄1(q1))dπ(q1)

]
.

By induction, as in the proof of Lemma 4.4.1, we obtain that if k ≥ 0 and q̄1 + k∆ ≤ q1,d, then

Pr {Q1 ≥ q̄1 + k∆} ≥
(

δε1,a
δε1,a + d

)k
Pr {Q1 ≥ q̄1}

+

[
1−

(
δε1,a

δε1,a + d

)k][
Pr {Q1 ≥ q1,d}+

1

d

∫ ∞
q1,d

(λ1 − s̄1(q1))dπ(q1)

]
.
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CHAPTER 6

On the tradeoff of average error rate and average delay

for point to point links

6.1 Introduction

In this chapter, we consider the transmission of a bursty information source over a noisy point to

point link. Our objective is to transmit the randomly arriving source message symbols such that the

message symbols are decoded reliably and with minimum delay. Reliability and delay performance

are measured by the average symbol error rate and the average symbol delay respectively. Under-

standing the fundamental tradeoff between reliability and delay is significant due to the increasing

use of cross layer scheduling, for allocation of highly constrained wireless resources, in modern high

rate communication networks. We assume that the transmitter and receiver use a block code (such

as a LDPC code) to reliably communicate the message symbols, as in many practical scenarios.

It is known [24, Chapter 24] that if the average information arrival rate into the system is less than

the capacity of the channel, then arbitrarily low probability of error can be achieved using block

coding with long codeword lengths and finite average delay. In this chapter, we first characterize

how the minimum possible average delay grows when the average error rate is made arbitrarily small.

However, there are cases where arbitrarily long codewords cannot be used. Then there is a positive

infimum for achievable error rate. Then for this case, we characterize how the minimum possible

average delay grows as the average error rate is made arbitrarily close to the above positive infimum

of achievable error rates, using the techniques discussed in Chapter 4. We note that the service

cost function in this chapter, which is the expected number of message symbols in error when a

batch of message symbols is transmitted, turns out to be non-convex unlike the convex service cost
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functions in the previous chapters. The notation that we use in this chapter is summarized in Tables

6.1 and 6.2.

6.1.1 System model

The system is assumed to evolve in discrete time units of slots. The slots are indexed by n ∈
{1, 2, · · · }. Each slot corresponds to one channel use. We note that these slots may be thought of

as subslots in the slots for the discrete time models in Chapter 4 (this is why the slots are indexed by

n rather than m in this chapter). The channel is assumed to be a memoryless channel, with input

alphabet X and output alphabet Y. The transition probability function of the channel is denoted

by PY |X .

We assume that there is no admission control throughout this chapter. The source generates a

random number As[n] ≤ Amax of message symbols in each slot n. We assume that As[n] is IID

with EAs[1] = λ and var(As[1]) = σ2, both of which are finite. Each message symbol is generated

independently and uniformly from a message alphabet M of finite cardinality |M|. The message

symbols are assumed to enter the queue just before the slot boundary and reside in the transmitter

buffer until they are encoded and transmitted. Transmission of a message symbol is assumed to

require at least one slot. The transmitter buffer size is assumed to be infinite.

The transmitter is assumed to use random block coding [22, Chapter 5]. Each symbol of the

transmitted channel codeword is picked IID from a distribution Q(.) on X . At a decision epoch,

which occurs at, say the start of slot n, if the transmitter decides to transmit, it uses a random block

codebook, with codewords generated as above. The codebook is characterized by two parameters,

the number of message symbols (s) which are encoded and transmitted by the codeword and

the length (τ) of the codeword. Starting from slot n, s message symbols are removed from the

transmitter queue after τ slots. We assume that there is no path delay in the transmission of

the codeword symbols. The receiver is assumed to decode the s message symbols jointly by using

maximum likelihood decoding of the codeword. If the transmitter decides not to transmit, then the

receiver is made aware of the idle state through the control channel and the transmitter idles for τ0

slots. A decision epoch occurs after every transmission period or idle period. We assume that at

the end of a slot n, events occur in the following order: a) if the service of a batch of symbols ends

then the batch is removed from the queue, b) new arrivals in slot n are admitted into the queue,

and c) the queue length state at the beginning of the next slot is obtained.

For the ith message symbol, let Ta,i denote the slot in which the symbol arrives into the transmitter

queue. Let Td,i denote the slot in which the ith symbol departs from the receiver. We note that

Td,i is the slot in which transmission of the batch containing the ith symbol finishes. The delay of

the ith symbol in the queue is Td,i − Ta,i. Let Ei denote the event that the ith symbol is in error.

A policy γ for operation of the transmitter consists of a sequence ((S[m], T [m]),m ≥ 1), where m ∈
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Symbol Description

n slot index

As[n] random number of message symbol arrivals in slot n

Amax maximum number of message symbol arrivals in a slot

λ, σ2 mean and variance of As[n]

X input alphabet of a point to point channel

Y output alphabet of a point to point channel

PY |X channel transition probability function

Q distribution on the channel input symbol ∈ X
s a particular batch size

τ a particular transmission duration

Ta,i arrival time of ith message

Td,i departure time of ith message

Ei event that the ith symbol is in error

m decision epoch index

S[m] service batch size for the mth transmission

Smax maximum service batch size

T [m] duration of the mth transmission

γ[m] = (S[m], T [m])

Q[m] queue length at decision epoch m

Qs[n] queue length at start of slot n

A[m] random number of message symbol arrivals between (m− 1)th and mth decision epochs

Γ set of all policies

Γs set of stationary policies

Pe(γ) average error prob. for policy γ

D(γ) average delay for policy γ

Pe,c constraint on the probability of error of message symbols

Dc constraint on the average delay of message symbols

M source message alphabet

|M| cardinality of M
Nc fixed codeword length

h(q, τ) holding cost; is qτ + τ(τ−1)λ
2

Γs,f set of all policies with transmission time being a fixed parameter

Γs,Nc set of all policies with transmission time being Nc

Table 6.1: Notation used in this chapter (part I).
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Symbol Description

Q(γ) average queue length for a policy γ

cs(s, τ) expected number of messages in error for a random block code

E0(ρ,Q) Gallager’s random coding error exponent

P ∗e (Dc) minimum average error probability over Γs under delay constraint Dc

P ∗e,f (Dc) minimum average error probability over Γs,f under delay constraint Dc

P ∗e,Nc(Dc) minimum average error probability over Γs,Nc under delay constraint Dc

PNc(λ) minimum achievable average error probability for the system to be stable

Rc cutoff rate of a point to point channel

C capacity of a point to point channel

ms a particular message symbol, ms ∈M
τ0 duration of time the transmitter idles

τ(s) transmission time as a function of s

Table 6.2: Notation used in this chapter (part II).

{1, 2, 3, · · · }. If S[m] > 0, then S[m] is the number of message symbols which start transmission at

the (m− 1)th decision epoch using a codeword of length T (m). If S[m] = 0, then the system idles

for T [m] = τ0 slots. Let γ[m] = (S[m], T [m]). The evolution of the system is illustrated in Figure

6.1. For every m, γ[m] can be a randomized function of (i) the history (γ[1], γ[2], · · · , γ[m− 1]),

(ii) the initial number of message symbols in the transmitter queue q0, and (iii) the arrival process

up to the start of the (m− 1)th decision epoch. The length of the transmitter queue at a decision

epoch m is denoted by Q[m]. The queue length at the start of a slot n is denoted by Qs[n − 1].

The evolution of the system sampled at the decision epochs, for a policy γ, is given by the following

equation:

Q[m+ 1] = Q[m]− S[m+ 1] +A[m+ 1], (6.1)

where S[m + 1] ≤ Q[m] and A[m] is the random number of arrivals which have occurred in the

period between the mth and (m + 1)th decision epochs. We note that A[m] ∼ ?T [m]As[1], the

T [m] convolution of As[1]. Let Γ denote the set of all policies. The class of all stationary policies

Γs is such that for any γ ∈ Γs, S[m] = S(Q[m − 1]) and T [m] = T (Q[m − 1]), where S and T
are functions (possibly randomized) of the queue length q. We note that if γ ∈ Γs, then Q[m] is a

Markov chain embedded in the random process Qs[n].

In the following, we consider two separate models, set up as follows.

R-model-A : ∀m ≥ 1, A[m] ∈ [0, Amax], S[m] ∈ R+, and q0 ∈ R+,

R-model-B : Same as the R-model-A, except that S[m] ∈ [0, Smax], and T [m] = Nc, m ≥ 1.

We note that for R-model-A and R-model-B, the queue length evolution (Q[m],m ≥ 0) is on the
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Figure 6.1: Evolution of the system for a block coding scheme

non-negative real numbers. Furthermore, for R-model-B, the maximum batch size is bounded by

Smax and the decision epochs occur every Nc slots. Hence, for R-model-B, all codewords are of

length Nc.

For R-model-A and R-model-B, for a γ ∈ Γ, we define the average delay as

D(γ) = lim sup
I→∞

∑I
i=1(Td,i − Ta,i)

I
. (6.2)

We also define the average error rate as

Pe(γ) = lim sup
I→∞

∑I
i=1 IEi
I

, (6.3)

where IEi is the indicator function for the event Ei.

Our problem is then to

minimize
γ∈Γ

Pe(γ) or minimize
γ∈Γ

D(γ)

such that D(γ) ≤ Dc such that Pe(γ) ≤ Pe,c.

for every Dc ≥ 1 or 0 ≤ Pe,c ≤ 1. For an average error rate constraint Pe,c >
|M|−1
|M| , we have

the following optimal solution: transmit all the arrivals in a slot in the succeeding slot, using a

channel input symbol picked independently of the message symbols, and pick the message symbol

estimates uniformly at the receiver (maximum likelihood decoding). In this chapter, we analyse the

above problem, for the class of stationary policies Γs, in the asymptotic regime where (i) arbitrarily

large reliability is required, that is, as Pe,c ↓ 0 for R-model-A, and (ii) Pe,c approaches the minimum
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probability of error for Nc, when the codeword length τ is fixed to be Nc for R-model-B.

6.1.2 Related work

We note that for obtaining the average error rate of a policy, we would need to know how the error

events Ei are related to the scheduling policy γ which chooses the parameters (S[m], T [m]) for

the random block codebook at every m ≥ 1. It is intuitive that, for a stationary policy γ, apart

from the noise introduced by the channel, Ei is a function only of the size s and the length τ of

the codebook, from which the codeword used to transmit the ith symbol is selected. Gallager [22,

Chapter 5] has provided an upper bound on the average error probability of a random block code

as a function of s and τ . The same reference also provides a lower bound on the average error

probability of any block code as a function of s and τ . The above upper and lower bounds show

that the average error probability of the random block code decays exponentially with the block

length for codeword rates less than the capacity of the channel. The upper bound which is obtained

as an ensemble average over random block codes (Gallager’s random coding upper bound) and the

lower bound (sphere packing bound) are found to coincide in the exponent for rates greater than

the cutoff rate for the channel. So for large values of the block length and for codeword rates

greater than the cutoff rate, the Gallager random coding upper bound can be used as a reasonable

approximation for the average error probability of the block codeword. Recently Polyanskiy [49] has

obtained upper and lower bounds as well as an analytically tractable approximation for the average

error probability of block codewords as a function of the rate and block length of the codebook.

The approximation has been observed to be tight even for small values of the block length. We

provide a detailed review of the results from Gallager [22] in Section 6.2.1 wherein the Gallager

random coding upper bound is used to approximate the average number of symbols in error, as a

function of s and τ , when random block codewords are used, as in our model.

Now we provide a survey of prior work on characterizing the tradeoff between reliability and delay

for point to point channels. Javidi and Swamy [31] consider a point to point link with a random

stationary arrival process of bits at rate λ into an infinite transmitter buffer. Every Nc slots, a

batch of s = rNc bits (with zero padding, if required) is encoded and transmitted over the noisy

channel using a block code of fixed rate r and length Nc. The transmission of a bit is said to

fail if : 1) the bit is part of a codeword that is decoded in error or 2) the bit is decoded past a

given delay deadline D. The authors study the probability of a bit transmission failure as a function

of r,Nc, and D. The analysis is asymptotic in nature - in the regime of large delay deadline D.

It is assumed that b > 2 and the codeword length Nc = D
b as D ↑ ∞. The constant b can be

interpreted as a parameter controlling the division of the overall delay budget D between queueing

delay and transmission delay. A large deviations result is used to show that the delay deadline

violation probability of a bit decays exponentially with the deadline D, as D ↑ ∞. Using Gallager’s

random coding upper bound, it is then shown that bit transmission failure probability also decays
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exponentially with the exponential rate being the minimum of (1/b) times the Gallager exponent,

and the delay exponent. The results obtained are in a similar vein as ours, as the exponential decay

of the error rate is shown with respect to the delay deadline. However, we consider average delay

as the metric and as we shall see, we also obtain the best decay rate over the class of stationary

policies, using codewords of fixed length. We also show that scaling the codeword length linearly

with average delay is optimal, with the scaling factor being 2/3.

Musy and Telatar [40] consider a continuous time queueing model with a Poisson message symbol

arrival process, for a point-to-point link with random block coding. The block coding scheme is

assumed to be such that the codeword length can be varied as a function of the number of message

symbols which are jointly encoded in a codeword. The codeword length is chosen such that the

block error probability for every transmission is at most a fixed constant. The authors obtain upper

and lower bounds on the minimum average delay for a fixed upper bound on the constant block

error probability. A joint scheduling-coding scheme for a point to point link, with ARQ, has been

analysed in [71] by Swamy and Javidi. The dependence of average error rate on delay has been

considered for non block coding schemes with Poisson arrivals in [80] by Yoon, and for a periodic

source in [47] by Negi and Goel.

6.1.3 Overview

We formulate the tradeoff problem in Section 6.2. For the class of stationary policies, we express the

average error rate and average delay, in terms of quantities which are analytically more tractable, in

the same section. In Section 6.2.1 we present a discussion on error exponents for discrete memoryless

channels. In this chapter, the Gallager random coding upper bound is used to obtain an upper bound

for the expected number of message symbols in error in every transmission, which is then used to

approximate the average error rate of stationary policies. We then consider the asymptotic behaviour

of the minimum average error rate subject to a constraint on the average delay, for R-model-A in

Section 6.3. We show that the minimum average error rate decays exponentially to zero, as the

constraint on the average delay increases to infinity. The exponential decay rate is shown to be

two-thirds of the Gallager random coding exponent. We then comment on the exponential decay

rate for a queueing model in which the queue length evolution is assumed to be on the set of

non-negative integers. We also consider the asymptotic behaviour of the average error rate for a

class of policies with codeword length dependent on the batch size, in the same section.

The asymptotic behaviour of the minimum average delay subject to a constraint on the average

error rate is then characterized for R-model-B in Section 6.4. This particular problem is similar

to the TRADEOFF problem, analysed in Chapter 4, except that the service cost function is non-

convex. For R-model-B, as all codewords are of finite length Nc, it is intuitive that the infimum

of achievable average error rates, for any finite average delay, is bounded away from zero. The
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non-convex nature of the service cost function leads to the result that depending on the value of

the arrival rate λ, the minimum average delay is either Ω
(

1√
V

)
or Θ

(
log
(

1
V

))
, when the average

error rate constraint is V more than the above positive infimum of achievable average error rates.

We then consider the tradeoff problem for a similar model, where the queue length evolution is on

integers, for which the results from Chapter 4 directly applies.

6.2 Problem formulation

In the following we restrict ourselves to a special subset of Γs, which is the set of admissible policies.

A policy γ ∈ Γs is admissible if:

1. the embedded Markov chain (EMC) Q[m] is positive Harris recurrent, with stationary distri-

bution πγ , and,

2. the embedded average EπγET |Qh(Q, T (Q)) <∞, where h(q, τ)
∆
= qτ + τ(τ−1)λ

2 .

We note that the function h(q, τ) can be interpreted as the cumulative expected queue length in

a deterministic transmission/idle period of duration τ , when q message symbols are present in the

queue at the beginning of that period. Every admissible policy is stable, according to the definition

in Section 4.1.3 of Chapter 4. To avoid unnecessary notation, and since in the following we consider

only admissible policies 1, we redefine Γs as the set of all admissible stationary policies. We recall

that T [m] is the duration of the transmission/idle period beginning at the (m−1)th decision epoch.

The set of all γ ∈ Γs, for which all transmission and idle periods are of a fixed duration Nc, i.e.,

T [m] = τ0 = Nc, is denoted as Γs,Nc . Let Γs,f
∆
=
⋃
Nc

Γs,Nc . We note that when operating with a

policy γ ∈ Γs,f , a transmission duration Nc(γ) is chosen at the first decision epoch, which is kept

fixed at all the other decision epochs. We have that Γ ⊃ Γs ⊃ Γs,f ⊃ Γs,Nc . We now express

D(γ) and Pe(γ) as averages of functions of the queue length and block coding parameters at the

decision epochs when γ ∈ Γs.

The average queue length Q(γ) for a policy γ ∈ Γs is defined as 2

Q(γ) = lim
N→∞

∑N−1
n=0 Qs[n]

N
. (6.4)

For γ ∈ Γs, we note that (Q[m], T [m+ 1]) is a Markov renewal process, with the renewal instants

corresponding to the decision epochs. In order to express the time average Q(γ) in terms of a

function of Q[m], we use the Markov renewal reward theorem [33, Theorem D.16]. We associate

a reward R[m] with the mth renewal cycle. The reward R[m] is the cumulative queue length over

1We note that the requirement of monotonicity as in the previous chapters is imposed only for R-model-B
2We note that this is a sample path definition, which is different from the definition in Chapter 4. However, for

γ ∈ Γs, the two definitions are equivalent.
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the renewal cycle, with the queue length at the beginning of the cycle being Q[m − 1] and cycle

length being T [m]. Since Q[m] is Markov and γ ∈ Γs we have that, conditioned on Q[m− 1] and

Q[m′−1], R[m] is independent of R[m′] for any m′ 6= m. Let T [m] be the number of slots up to the

start of the mth renewal cycle (T [1] = 0). We have that the expected reward E [R[m]|Q[m− 1]],

in cycle m, is

r[m] = E

Q[m− 1]T [m] +

T [m]−1∑
n=1

n∑
n′=1

As[T [m] + n′]

∣∣∣∣∣∣Q[m− 1]

 .
Since As[n] are assumed to be IID we have that

r[m] = E
[
Q[m− 1]T [m] +

T [m](T [m]− 1)λ

2

∣∣∣∣Q[m− 1]

]
.

We define the holding cost at a decision epoch, where the queue length is q and a deterministic

transmission/idle time τ is chosen, as a function h(q, τ) defined as

h(q, τ) = qτ +
τ(τ − 1)λ

2
.

We note that r[m] = Eh(q, T (q)), if Q[m − 1] = q, and the expectation is over the randomized

choice of τ . We note that for any γ ∈ Γs, since EπγEh(Q, T (Q)) < ∞, we also have that

EπγET (Q) <∞. Then, we have from [33, Theorem D.16] that

lim
N→∞

∑N−1
n=0 Qs[n]

N

a.s
=

EπγET |Qh(Q, T (Q))

EπγET |QT (Q)
.

Hence, for γ ∈ Γs, using Little’s law [78], we have

D(γ) =
Q(γ)

λ
=

EπγET |Qh(Q, T (Q))

λEπγET |QT (Q)
. (6.5)

To express Pe(γ) as a time average we use the generalized H = λG form of Little’s law [78]. Define

Fi[n] = 0 for n ∈ {0, . . . , Td,i − 1} and Fi[n] = IEi for n ∈ {Td,i, . . .}. Let GI denote the fraction

of the first I message symbols that are in error, and HN denote the time-rate of message symbols

errors over the first N slots, i.e.,

GI =
1

I

I∑
i=1

∞∑
n=1

(Fi[n]− Fi[n− 1]) ,

HN =
1

N

N−1∑
n=0

∑
{i:Td,i=n}

IEi .
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We note that limI→∞GI = Pe(γ). If H = limN→∞HN , then H = λPe(γ) from [78, Section

6]. For the batch transmission scheme, the set {i : Td,i = n} is empty, except for those n such

that n = T [m] =
∑m−1

m′=1 T [m′]. We also have that |{i : Td,i = T [m]}| = S[m − 1]. We note

that since the channel is memoryless and the decoding of a message batch of size S[m− 1] is done

based on the channel outputs received only in the transmission time T [m− 1], given S[m− 1] and

T [m − 1], the events {Ei : Td,i = T [m]} are independent of any other error event of a message

symbol transmitted in a period other than m − 1. As in the previous case we associate a reward

R[m] with the mth renewal cycle, which is the total number of message symbols in error during

the mth transmission period, starting with Q[m− 1] message symbols in the queue. The expected

reward E [R[m]|Q[m− 1]] in the mth renewal cycle is

r[m] = E

 ∑
{i:Td,i=T [m+1]}

IEi

∣∣∣∣∣∣Q[m− 1]

 ,
= ES[m],T [m]|Q[m−1]

 ∑
{i:Td,i=T [m+1]}

Pr {Ei|S[m], T [m]}

∣∣∣∣∣∣Q[m− 1]


where Pr {Ei|S[m] = s, T [m] = τ} is the probability of error of the ith symbol transmitted in the

mth period using a block code with size |M|s and of codeword length τ . We define the error

cost at a decision epoch to be cs(s, τ) =
∑

i∈C(s,τ) Pr {Ei|S = s, T = τ}, where at that decision

epoch, C(s, τ) is the set of s symbols which have been jointly encoded into a codeword of length

τ . We note that for γ ∈ Γs, EπγET |QT (Q) < ∞. Applying the Markov renewal reward theorem

[33, Theorem D.16] we obtain that

H
a.s
=

EπγES,T |Qcs(S(Q), T (Q))

EπγET |QT (Q)
.

And therefore,

Pe(γ) =
1

λ

EπγES,T |Qcs(S(Q), T (Q))

EπγET |QT (Q)
. (6.6)

In the next section we discuss some approximations for cs(s, τ) which are used in further analysis

of the tradeoff problem.

6.2.1 The error cost cs(s, τ)

We note that cs(s, τ) =
∑

i∈C(S,T ) E
[
IEi|S=s,T =τ

]
, is the expected number of message sym-

bols in error when a random block code is used to transmit s message symbols in τ slots. In

the following, the error cost cs(s, τ) is approximated using the Gallager random coding upper

bound, since we are interested in an asymptotic characterization of the tradeoff curve as the error

rate constraint Pe,c ↓ 0. It is intuitive that policies γ ∈ Γs,f , for which Pe(γ) ≤ Pe,c, have
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block lengths growing to infinity as Pe,c ↓ 0. Therefore in the regime of Pe,c ↓ 0, approxi-

mating cs(s, τ) using the Gallager random coding upper bound is not unreasonable [23] 3. Let

P (s, τ)
∆
= Pr {∃i ∈ {1, · · · , s} s.t ms,i 6= m̂s,i|S = s, T = τ}, where ms,i and m̂s,i are the trans-

mitted and decoded symbols respectively.

For a random block code of length τ transmitting s symbols, we have from [22, Theorem 5.6.2]

that the codeword error probability P (s, τ) is

≤ min
(

1, e−τ(E0(ρ,Q)−ρ s
τ

ln |M|)
)

= min
(

1, e−τEr(ρ,s,τ,Q)
)
, (6.7)

where E0(ρ,Q) = − ln

(∫
y∈Y

(∫
x∈X dQ(x)

(
dPY |X(y|x)

) 1
1+ρ

)1+ρ
)

, ρ ∈ [0, 1] and Q is the chan-

nel input distribution. The best upper bound is obtained by minimizing the above bound over the pa-

rameter ρ ∈ [0, 1] and the distributionQ. We note that this can be done by maximising the exponent

Er(ρ, s, τ,Q) with respect to ρ and Q. Depending on whether we do not choose/choose to optimise

over ρ and/orQ there are four different exponents : (a) Er(ρ, s, τ,Q) = (E0(ρ,Q)−ρ sτ ln |M|), (b)

Er(ρ, s, τ) = maxQ(E0(ρ,Q) − ρ sτ ln |M|), (c) Er(s, τ,Q) = maxρ∈[0,1](E0(ρ,Q) − ρ sτ ln |M|),

and (d) Er(s, τ) = maxρ∈[0,1] maxQ(E0(ρ,Q)− ρ sτ ln |M|).

If a symbol is in error then the decoded codeword is also in error, therefore Pr {Ei|S = s, T = τ} ≤
P (s, τ). Using the union bound on P (s, τ) and the above inequality we also obtain that

P (s, τ) ≤
s∑
i=1

Pr {Ei|S = s, T = τ} ≤ sP (s, τ). (6.8)

In the following, we approximate cs(s, τ) by assuming that all symbols are decoded incorrectly

if the codeword is in error. Different upper bounds on the codeword error probability (from the

different random coding exponents) can be used to obtain approximations for cs(s, τ). The following

approximations are possible : cs(s, τ) = (a) smin(1, e−τE0(ρ,Q)+ρs ln |M|) where both ρ and Q are

fixed, (b) smin(1, eminQ(−τE0(ρ,Q)+ρs ln |M|)), where ρ is fixed, (c) seminρ∈[0,1](−τE0(ρ,Q)+ρs ln |M|),

where Q is fixed, and (d) seminρ∈[0,1],Q(−τE0(ρ,Q)+ρs ln |M|). We note that approximation (a) is found

to be analytically tractable as ρ and Q are fixed and do not depend on s and τ . In (b) the optimal

Q is a function of the fixed ρ and the following analysis applies, as it would be similar to that of (a)

with Q being fixed at the optimal Q for the fixed ρ. We note that the minimizing ρ and Q are not

known explicitly as a function of s and τ even for simple channel models [22, Chap 5]. However,

for R-model-A, we shall see that the exponential decay, of the minimum average error rate with

the constraint on the average delay, can be shown to be governed by the best exponent (d), even

with the following assumption. For R-model-B, we comment on how the asymptotic results can be

3In [23] Gallager has shown that the random coding upper bound is tight for the probability of block error for an

IID ensemble of codes, by showing that the lower bound on the ensemble error probability is at most O
(

1
τ

ln
(

1√
τ

))
away from the random coding upper bound for large block length τ , for code rates less than the capacity of the
channel PY |X .
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extended to other approximations of cs(s, τ). We make the following assumption :

C1 : The error cost or the expected number of symbols in error for a random block code of codeword

length τ transmitting s symbols is cs(s, τ) = smin
(
1, e(−τE0(ρ,Q)+ρs ln |M|)), where ρ and Q

are fixed and are such that E0(ρ,Q)
ρ > λ ln |M|.

The tradeoff problem that we consider is defined separately for R-model-A and R-model-B in the

following sections.

6.3 Asymptotic analysis for R-model-A

6.3.1 Problem Statement

We consider the tradeoff of average error rate with average delay for γ ∈ Γs. The following analysis

has been presented in [58] and [56]. The TRADEOFF problem is:

minimizeγ∈Sb
EπγES,T |Qcs(S(Q), T (Q))

λEπγET |QT (Q)

such that
EπγET |Qh(Q, T (Q))

λEπγET |QT (Q)
≤ Dc, (6.9)

where we have used (6.5) and (6.6). If Sb = Γs, then let P ∗e (Dc) denote the optimal value of

TRADEOFF. If Sb = Γs,f , then the optimal value of TRADEOFF is denoted by P ∗e,f (Dc), and if

Sb = Γs,Nc , then the optimal value of TRADEOFF is denoted by P ∗e,Nc(Dc). We can also consider

the equivalent problem EQT-TRADEOFF:

minimizeγ∈Sb
EπγET |Qh(Q, T (Q))

λEπγET |QT (Q)

such that
EπγES,T |Qcs(S(Q), T (Q))

λEπγET |QT (Q)
≤ Pe,c. (6.10)

If Sb = Γs, then let D∗(Pe,c) denote the optimal value of TRADEOFF. If Sb = Γs,f , then the

optimal value of TRADEOFF is denoted by D∗f (Pe,c), and if Sb = Γs,Nc , then the optimal value of

TRADEOFF is denoted by D∗Nc(Pe,c). In the next section we discuss the asymptotic behaviour of

P ∗e,f (Dc) and P ∗e (Dc) as Dc →∞. We note that as in Section 4.2.1, we can show that there exists

an optimal policy for the above problem.

6.3.2 Asymptotic analysis

In the following lemma, we obtain infDc P
∗
e,Nc

(Dc).
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Lemma 6.3.1. We have that infDc P
∗
e,Nc

(Dc) = PNc(λ), where

PNc(λ) =

e
−Nc(E0(ρ,Q)−ρλ ln |M|), if 0 ≤ λNc ≤ s′,
1

λNc

(
(λNc − s′) + s′e−NcE0(ρ,Q)+ρs′ ln |M|

)
, otherwise,

where s′ is the unique solution of the equation (1 + ρs′ ln |M|) eρs′ ln |M| = eNcE0(ρ,Q).

Proof. We first show that PNc(λ) ≤ P ∗e,Nc(Dc), ∀Dc. We note that as we are considering policies

γ ∈ Γs,Nc , the expected transmission time is always Nc and therefore (6.5) and (6.6) simplify to
Eπγh(Q,Nc)

λNc
and

EπγES|Qcs(S,Nc)
λNc

respectively. We consider the following optimization problem:

minimize
π

1

λNc
Eπ
[
Smin

(
1, e−NcE0(ρ,Q)+ρS ln |M|

)]
, (6.11)

such that EπS ≥ λNc + ε, ε ≥ 0,

where π is any distribution for S with support on R+, irrespective of the policy γ. With ε = 0 in

(6.11) leading to the constraint EπS ≥ λNc, the optimal value of the minimization problem (6.11)

is a lower bound to P ∗e,Nc(Dc) for any finite Dc as the minimization is over all possible distributions

of S and we impose only the constraint that the average service rate EπS
Nc

has to be greater than or

equal to the arrival rate λ. From Appendix 6.A we obtain that

P ∗e,Nc(Dc) ≥

e
−Nc(E0(ρ,Q)−ρλ ln |M|) if 0 ≤ λNc ≤ s′,
1

λNc

(
(λNc − s′) + s′e−NcE0(ρ,Q)+ρs′ ln |M|

)
otherwise,

(6.12)

where s′ is the unique solution of the equation (1 + ρs′ ln |M|) eρs′ ln |M| = eNcE0(ρ,Q), for every

finite Dc. Let PNc(λ) denote the RHS of (6.12). We note that PNc(λ) is equal to the value of the

lower convex envelope of cs(s,Nc)
λNc

as a function of s, at s = λNc.

Now we show that for any ε > 0, it is possible to construct a policy γ ∈ Γs,Nc such that Pe(γ) ≤
PNc(λ)+ε. Then we have that P ∗e,Nc(D(γ)) ≤ PNc(λ)+ε and therefore PNc(λ) = infDc P

∗
e,Nc

(Dc).

In the first step of the construction we consider the optimization problem (6.11) but with an ε > 0.

The optimal value of the problem (6.11) as a function of ε is denoted by s(ε). A feasible distribution

for S that achieves s(ε) + δ is called (δ, ε)-optimal for a δ > 0. In Appendix 6.A it is shown that

there exists a distribution with finite support that is (δ, ε)-optimal for any ε > 0 and δ > 0.

Now we proceed to the second step of the construction. For an ε > 0 we use any (δ, ε)-optimal

distribution to construct a policy as follows. Let U [m] be a sequence of IID random variables

distributed as the (δ, ε)-optimal distribution. The policy γ uses batch sizes S[m] = min(Q[m −
1], U [m]). We note that γ is stationary. Since ε > 0, EU > λNc. Therefore, the EMC Q[m] under

γ is positive recurrent. It can also be shown that the average delay is finite as U [m] has finite

support. Therefore, γ is admissible, i.e., γ ∈ Γs. Evaluating the average error cost for γ we have
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that Pe(γ) ≤

Ecs(U,Nc)
λNc

=

e
ερ ln |M|e−NcE0(ρ,Q)+(ρ ln |M|)λNc + εe−NcE0(ρ,Q)+(ρ ln |M|)(λNc+ε), if λNc ∈ [0, s′ − ε],
1

λNc

(
λNc − s′ + s′e−NcE0(ρ,Q)+ρs′ ln |M|

)
+ ε+δ

λNc
, otherwise.

Let δ = ε. Therefore, Pe(γ) ≤ PNc(λ) +O(ε). Hence, by an appropriate choice of ε in (6.11), we

can show that ∀ε > 0, there exists Dc = D(γ) such that P ∗e,Nc(Dc) ≤ Pe(γ) ≤ PNc(λ) + ε. Hence,

PNc(λ) = infDc P
∗
e,Nc

(Dc).

Remark 6.3.2. Since any policy γ ∈ Γs,Nc is feasible for TRADEOFF for any Dc ≥ D(γ), we also

have that PNc(λ) = infγ∈Γs,Nc
Pe(γ). We note that P ∗e,Nc(Dc) is a non-increasing function of Dc.

Therefore, PNc(λ) = limDc→∞ P
∗
e,Nc

(Dc). We note that PNc(λ) is similar to c(λ) in Chapter 4.

We now present a lemma which formalizes our intuition that PNc(λ) approaches zero as the code-

word length Nc approaches infinity.

Lemma 6.3.3. If λ ln |M| < E0(ρ,Q)
ρ , then PNc(λ) = e−Nc(E0(ρ,Q)−ρλ ln |M|) for large enough Nc,

and therefore, limNc→∞ PNc(λ) = 0.

Proof. From Lemma 6.3.1 we have that

PNc(λ) =

e
−Nc(E0(ρ,Q)−ρλ ln |M|) if 0 ≤ λNc ≤ s′,
1

λNc

(
(λNc − s′) + s′e−NcE0(ρ,Q)+ρs′ ln |M|

)
otherwise,

where s′ solves the equation (1 + ρs′ ln |M|) eρs′ ln |M| = eNcE0(ρ,Q). We note that if we show

that, λ ln |M| < E0(ρ,Q)
ρ implies that λNc ≤ s′ for large enough Nc, then we have that PNc(λ) =

e−Nc(E0(ρ,Q)−ρλ ln |M|) for large enough Nc, which leads to both results of the lemma. We have

that

e−NcE0(ρ,Q)
[
eρs
′ ln |M| {1 + ρs′ ln |M|

}]
= 1 or ,

ρs′ ln |M|+ ln
(
1 + s′ρ ln |M|

)
= NcE0(ρ,Q). (6.13)

We note that the LHS of (6.13) is an increasing continuous function of s′ with LHS = 0 at s′ = 0.

Thus for any Nc, there is a unique s′ which solves the equation (6.13). Also as Nc increases this

unique solution s′(Nc), as a function of Nc, also increases, and as Nc ↑ ∞, s′(Nc) ↑ ∞. We

multiply both sides of (6.13) by λ, divide by s′(Nc) and E0(ρ,Q) to yield

λ ln |M| ρ

E0(ρ,Q)
+

λ

E0(ρ,Q)

ln (1 + s′(Nc)ρ ln |M|)
s′(Nc)

=
λNc

s′(Nc)
(6.14)

Since we have assumed that λ ln |M| < E0(ρ,Q)
ρ , δ

∆
= 1−λ ln |M| ρ

E0(ρ,Q) > 0. For sufficiently large

Nc, s
′(Nc) can be made sufficiently large, so that ln(1+s′(Nc)ρ ln |M|)

s′(Nc)
< δ

2
E0(ρ,Q)

λ which implies that
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λNc
s′(Nc)

≤ 1 − δ
2 . Hence for large Nc,

λNc
s′(Nc)

< 1 and therefore PNc(λ) = e−Nc(E0(ρ,Q)−ρλ ln |M|).

Therefore, PNc(λ) ↓ 0 as Nc ↑ ∞ if λ ln |M| < E0(ρ,Q)
ρ .

We now consider the asymptotic behaviour of P ∗e,f (Dc), as Dc ↑ ∞. We first show that if λ ln |M| <
E0(ρ,Q)

ρ , then P ∗e,f (Dc) ↓ 0 as Dc ↑ ∞. This result is obtained by showing that for a sequence of

policies µk ∈ Γs,f , for which D(µk) ↑ ∞, Pe(µk) ↓ 0 . Then P ∗e,f (D(µk)) ↓ 0. Furthermore,

since Dµk ↑ ∞, P ∗e,f (Dc) ↓ 0 for any sequence Dc ↑ ∞. The sequence of policies µk ∈ Γs,f is

parametrized by the codeword length Nc,k, where Nc,k is an unbounded increasing sequence. A

fixed rate of transmission r is chosen such that λ ln |M| < r ln |M| < E0(ρ,Q)
ρ . Let Rk = rNc,k.

The policy µk chooses S[m] = min(Q[m − 1], Rk). We note that since r > λ, it can be shown

that µk ∈ Γs,f ,∀k.

Proposition 6.3.4. If λ ln |M| < r ln |M| < E0(ρ,Q)
ρ , for the sequence of policies µk defined above,

we have that limk→∞
− lnPe(µk)
D(µk) = r−λ

r−λ+rλ (E0(ρ,Q)− ρr ln |M|), with D(µk) ↑ ∞. Therefore

Pe(µk) ↓ 0.

Proof. For µk, we note that Pe(µk) ≤
Eπµk

[
Se
−Nc,kE0(ρ,Q)+ρS ln |M|

]
λNc,k

. As S ≤ rNc,k we have that

Pe(µk) ≤
r

λ
Eπµk

[
e−Nc,kE0(ρ,Q)+ρS ln |M|

]
, (6.15)

≤ r

λ

(
eE0(ρ,Q)−ρr ln |M|

)−Nc,k
. (6.16)

From Appendix 6.D we have that

EµkQ ≤
σ2

2(r − λ)
+
λNc,k

2
+
rλNc,k

r − λ
.

We note that in our case, there is an extra time average holding cost of
λ(Nc,k−1)

2 due to the

customers waiting during a transmission period of Nc,k slots. Therefore,

D(µk) ≤
σ2

2λ(r − λ)
− 1

2
+Nc,k

(
1 +

rλ

r − λ

)
,

r − λ
r − λ+ rλ

(
D(µk)−

σ2

2λ(r − λ)
+

1

2

)
≤ Nc,k. (6.17)

Since D(µk) is at least Nc,k we have that D(µk) ↑ ∞ as Nc,k ↑ ∞.

Substituting the lower bound on Nc,k from (6.17) in (6.16), we have that

Pe(µk) ≤
r

λ

(
eE0(ρ,Q)−ρr ln |M|

)− r−λ
r−λ+rλ

(
D(µk)− σ2

2λ(r−λ)
+ 1

2

)
.

Hence limk→∞
− lnPe(µk)
D(µk) = r−λ

r−λ+rλ (E0(ρ,Q)− ρr ln |M|), and Pe(µk) ↓ 0.
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We now show that any sequence of policies γk ∈ Γs,f , for which Pe(γk)→ 0, has Nc(γk)→∞.

Lemma 6.3.5. For any sequence of policies γk ∈ Γs,f , Nc(γk)→∞ if Pe(γk)→ 0.

Proof. Assume that there exists a sequence of policies γk ∈ Γs,f for which Pe(γk) → 0, but

Nc(γk) 6→ ∞. Therefore lim supk→∞Nc(γk) = Nc,l < ∞. From Lemma 6.3.1 we have that

Pe(γk) ≥ PNc,k(λ), ∀k. If Nc,l < ∞ we have that limk→∞ Pe(γk) ≥ PNc,l(λ) > 0, which contra-

dicts the assumption that Pe(γk) ↓ 0. Therefore Nc(γk) should necessarily grow to infinity for the

sequence of policies γk.

From the above result and since P ∗e,f (Dc) ↓ 0 as Dc ↑ ∞, we know that to obtain an asymptotic

characterization of P ∗e,f (Dc) as Dc ↑ ∞, we need only consider sequences of policies γk ∈ Γs,f with

Nc(γk) ↑ ∞. Now for any sequence γk ∈ Γs,f , with Nc(γk) → ∞, we present an upper bound on

the decay rate limDc→∞−
ln(P ∗e,f (Dc))

Dc
.

Proposition 6.3.6. If λ ln |M| < E0(ρ,Q)
ρ , the exponential decay rate of P ∗e,f (Dc) has the following

upper bound:

lim
Dc→∞

− ln(P ∗e,f (Dc))

Dc
≤ 2

3
(E0(ρ,Q)− ρλ ln |M|) ,

for a fixed ρ and Q. The best upper bound on the decay rate is obtained by fixing ρ and Q to be

ρ∗ and Q∗ respectively, where

(ρ∗,Q∗) = arg max
ρ∈[0,1],Q

2

3
(E0(ρ,Q)− ρλ ln |M|) .

Proof. From Proposition 6.3.4, we have that P ∗e,f (Dc) ↓ 0 as Dc ↑ ∞. From Lemma 6.3.5, we need

only consider any sequence of γk ∈ Γs,f such that Nc,k = Nc(γk) → ∞. We have from Lemma

6.3.1 that Pe(γk) ≥ PNc,k(λ). Then from Lemma 6.3.3 for large enough k, as λ ln |M| < E0(ρ,Q)
ρ

we have that Pe(γk) ≥ e−Nc,k(E0(ρ)−ρλ ln |M|). From (6.5), for a fixed codeword length Nc,k we

have that D(γk) = EπQ
λ +

Nc,k−1
2 . For any γk, EπQ ≥ EπES|QS = λNc,k as Q ≥ S. Therefore

D(γk) ≥
3Nc,k

2 − 1
2 or 2

3(D(γk) + 1
2) ≥ Nc,k. Hence Pe(γk) ≥ e−

2
3

(D(γk)+ 1
2

)(E0(ρ,Q)−ρλ ln |M|)

or limk→∞
− ln(Pe(γk))

D(γk) ≤ 2
3(E0(ρ,Q) − ρλ ln |M|). We note that the above upper bound on the

exponential decay rate holds for any sequence of policies γk. For (6.9), we have by definition that for

Dc ≥ 1 and ε > 0, there exists a γ such thatD(γ) ≤ Dc and Pe(γ) ≤ P ∗e,f (Dc)+ε. For any sequence

γk, choose ε from the sequence εk = e−e
Nc,k

. Then, we have that limDc→∞
− ln(P ∗e,f (Dc))

Dc
≤

2
3(E0(ρ,Q) − ρλ ln |M|). The best upper bound on decay rate is then obtained by choosing the

fixed ρ and Q to be ρ∗ and Q∗ respectively.
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Now we consider the decay rate, limDc↑∞−
lnP ∗e (Dc)

Dc
. Unlike the class of policies considered above,

where the transmission duration was always fixed to be a parameter Nc, for γ ∈ Γs we have that at

each decision epoch m, the transmitter can choose both the batch size S[m] and the transmission

duration T [m]. We obtain a lower bound to the exponential decay rate of P ∗e (Dc) as Dc ↑ ∞, by

obtaining the exponential decay rate limk→∞− lnPe(ek)
D(ek) , for a sequence of exhaustive service (EXH)

policies ek, with D(ek) ↑ ∞. Consider an EXH policy e. The policy e chooses S[m] = Q[m−1] and

T [m] such that the codeword error probability is at most Pe,b. Intuition suggests that the codeword

length T [m] has to be at least a minimum value, say τ(S[m]), which is a function of the batch size

S[m], to guarantee that the codeword error probability P (S[m], T [m]) is at most Pe,b for every m.

The message alphabet size is |M|, therefore the alphabet size of the batch of s message symbols

is |M|s. The rate in nats is R = s ln |M|
τ(s) . Consider a randomly generated codebook, in which each

codeword symbol is chosen independently according to the distribution Q on the input alphabet

X . The receiver is assumed to do maximum likelihood decoding of the joint message. From [22,

Theorem 5.6.2], we have that the average probability of codeword error is bounded above as:

P (s, τ) ≤ e−τ{−ρR+E0(ρ,Q)},

or lnP (s, τ) ≤ ρs ln |M| − τE0(ρ,Q),

where ρ ∈ [0, 1], E0(ρ,Q) = − ln

∫
y∈Y

[∫
x∈X
Q(x)PY |X(y|x)

(
1

1+ρ

)
dx

]1+ρ

dy. To guarantee the

average error rate requirement, we constrain P (s, τ) to be ≤ Pe,r. If

e−τ{−ρR+E0(ρ,Q)} ≤ Pe,r,

then P (s, τ) ≤ Pe,r. For every s, if τ is chosen as a function τ(s) to satisfy the above inequality,

we have that

− lnPe,r
E0(ρ,Q)

+
ρs ln |M|
E0(ρ,Q)

≤ τ(s).

Thus τ(s) has to be chosen as the smallest integer greater than or equal to as+b, where a = ρ lnM
E0(ρ,Q)

and b =
− lnPe,r
E0(ρ,Q) . Therefore τ(s) = das+ be , s > 0, so that P (s, τ) ≤ Pe,r.

We assume that e chooses T [m] = τ(S[m]) if S[m] > 0 and T [m] = 1 if S[m] = 0. Let the

stationary distribution corresponding to policy e be π. Then for e, Pe(e) is less than or equal to
EπSPe,b
λEπT . Since EπS = λEπT we have that Pe(e) ≤ Pe,b. For a given Pe,b let the average delay for

e be denoted by DEXH(Pe,b). We have the following upper bound Du(Pe,b) on the average delay

DEXH(Pe,b).

Proposition 6.3.7. DEXH(Pe,b) ≤ Du(Pe,b), where

Du(Pe,b) =

(
b+ 1

b

)(
aσ2

2(1− aλ)
+

3(b+ 1)λ

2(1− aλ)
+

aσ2

2(1− a2λ2)
− λ

2

)
.
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The proof is given in Appendix 6.B. We now compare the above upper bound with the upper bound

obtained by Musy and Telatar [40]. We note that the model considered by Musy and Telatar in

[40] is a continuous time model with Poisson arrivals. In [40], if a batch size s > 0 is used, then

the service time is D + ks. For simplicity, assume that D and k are integers. Let δ be such that

bδ = D and aδ = k, where a and b are integers. Then if we assume that each slot in our model is

of δ duration, then the time taken for service of s customers in our model and the model in [40] is

the same. Let the Poisson arrival rate of customers in Musy’s model be λm. Now assume that the

arrival process in our model is Bernoulli with an arrival probability (rate) of λ = λmδ in each slot.

We note that if a and b are integers, then τ(s) = as+ b for every s > 0. Then the upper bound in

Proposition 6.3.7 simplifies to

aσ2

2(1− aλ)
+

3bλ

2(1− aλ)
+

aσ2

2(1− a2λ2)
− λ

2
. (6.18)

We note that σ2 = λ− λ2 for a Bernoulli arrival process. Substituting λ = λmδ, a = k
δ and b = D

δ

and taking the limit as δ ↓ 0 (along a sequence such that a and b are integers) we obtain that the

average queue length in the limit is

3Dλm
2(1− λmk)

+
λmk(2 + λmk)

2(1− λmk)
. (6.19)

We note that this is the same as that obtained by Musy in Section 2.3.2 of his thesis [39].

The above upper bound leads to the following characterization of the exponential decay rate of the

average error rate.

Proposition 6.3.8. The exponential decay rate : limDc→∞
− lnP ∗e (Dc)

Dc
≥ 2

3(E0(ρ∗,Q∗)−ρ∗λ ln |M|).

Proof. Let Pe,u(Dc)
∆
= inf {p ∈ [0, 1] : Du(p) ≤ Dc}. We note that if Du(p) ≤ Dc, then the

e policy corresponding to p has D(e) ≤ Dc and therefore P ∗e (Dc) ≤ Pe(e) ≤ p. Therefore,

P ∗e (Dc) ≤ Pe,u(Dc). We have that Pe,u(Dc) is such that(
bu + 1

buλ

)(
3(bu + 1)λ

2(1− aλ)
+

aσ2

2(1− aλ)
+

aσ2

2(1− a2λ2)
− λ

2

)
= Dc,

where bu =
− lnPe,u(Dc)
E0(ρ,Q) . We obtain the following quadratic equation in bu:

(bu + 1) ((bu + 1)c1 + c2) = buλDc,
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where c1 = 3λ
2(1−aλ) and c2 = aσ2(2+aλ)

2(1−a2λ2)
− λ

2 . Or

− lnPe,u(Dc)

E0(ρ,Q)
=

1

2c1

[
λDc − 2c1 − c2 +

√
(λDc − 2c1 − c2)2 − 4c1(c1 + c2)

]
,

since we want the largest exponent. Let Dc,k be a sequence such that Dc,k ↑ ∞. Then, we have a

sequence pk = inf {p : Du(p) ≤ Dc,k}. As above, we obtain

− ln pk
E0(ρ,Q)

=
1

2c1

[
λDc,k − 2c1 − c2 + λDc,k

√(
1− 2c1 + c2

Dc,k

)2

− 4c1(c1 + c2)

D2
c,k

]
.

Therefore, we have that limDc,k→∞
− ln pk
Dc,k

= λE0(ρ,Q)
c1

= 2
3(E0(ρ,Q)−ρλ ln |M|), after substituting

for a in c1. Hence, we have that limDc→∞
− lnP ∗e (Dc)

Dc
≥ 2

3(E0(ρ∗,Q∗) − ρ∗λ ln |M|), by fixing ρ

and Q to be ρ∗ and Q∗ respectively.

We note that we do not have any upper bound on the exponential decay rate limDc→∞
− lnP ∗e (Dc)

Dc
,

over the class of policies Γs.

6.3.3 Integer valued queue evolution

We note that for R-model-A, the queue length process evolves on R+. Suppose we consider the

case, where the arrival process A[m] ∈ {0, 1, . . . , Amax ∈ Z+}, q0 ∈ Z+, and S[m] ∈ Z+. Then the

queue length process (Q[m],m ≥ 0) would evolve on Z+. Let us denote this model as I-model-A.

Intuitively, P ∗e (Dc), P
∗
e,f (Dc), or P ∗e,Nc(Dc) (or D∗(Pe,c), D∗f (Pe,c), or D∗Nc(Pe,c)) for R-model-A

(with Pr {A[m] = a} > 0 only for a ∈ {0, 1, . . . , Amax}) would be a lower bound to the same

performance measures for I-model-A, as the set of feasible policies for R-model-A would always be a

superset of the set of feasible policies for I-model-A for the optimization problem (6.9) (or (6.10)),

from which P ∗e (Dc), P
∗
e,f (Dc), or P ∗e,Nc(Dc) (or D∗(Pe,c), D∗f (Pe,c), or D∗Nc(Pe,c)) is obtained as

the optimal value.

For I-model-A, we note that P ∗e,f (Dc) ↓ 0 as Dc ↑ ∞, since the sequence of policies µk can be

restricted to use only non-negative integer valued Rk = rNc,k by an appropriate choice of the

sequence Nc,k and a rational number r > λ. Furthermore, in this case, the following tighter bound

on the exponential decay rate can be obtained for the sequence µk.

Proposition 6.3.9. If λ ln |M| < r ln |M| < E0(ρ,Q)
ρ , for the sequence of policies µk defined

above, we have that limk→∞
− lnPe(µk)
D(µk) = 2

3 (E0(ρ,Q)− ρr ln |M|), with D(µk) ↑ ∞. Therefore

Pe(µk) ↓ 0.
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Proof. For µk, we note that Pe(µk) ≤
Eπµk

[
Se
−Nc,kE0(ρ,Q)+ρS ln |M|

]
λNc

. As S ≤ rNc,k we have that

Pe(µk) ≤
r

λ
Eπµk

[
e−Nc,kE0(ρ,Q)+ρS ln |M|

]
, (6.20)

≤ r

λ

(
eE0(ρ,Q)−ρr ln |M|

)−Nc,k
. (6.21)

From Denteneer et al. [19, equation (9) and the upper bound in (12)] we have that

EπµkQ ≤
σ2

2(r − λ)
+
λNc,k

2
+

1

2
min(λNc,k, rNc,k − 1).

For k large enough, as Nc,k →∞ and λ < r, we have that

EπµkQ ≤
σ2

2(r − λ)
+ λNc,k.

We note that in our case, there is an extra time average holding cost of
λ(Nc,k−1)

2 due to the

customers waiting during a transmission period of Nc,k slots. Therefore an upper bound on the

time average queue length is
σ2

2(r − λ)
+

3λNc,k

2
− λ

2
.

Therefore

D(µk) ≤
σ2

2λ(r − λ)
+

3Nc,k

2
− 1

2
,

2

3

(
D(µk)−

σ2

2λ(r − λ)
+

1

2

)
≤ Nc,k. (6.22)

Since D(µk) is at least Nc,k we have that D(µk) ↑ ∞ as Nc,k ↑ ∞. Substituting the lower bound

on Nc,k from (6.22) in (6.21), we have that

Pe(µk) ≤
r

λ

(
eE0(ρ,Q)−ρr ln |M|

)− 2
3

(
D(µk)− σ2

2λ(r−λ)
+ 1

2

)
.

Hence limk→∞
− lnPe(µk)
D(µk) = 2

3 (E0(ρ,Q)− ρr ln |M|), and Pe(µk) ↓ 0.

Remark 6.3.10. We note that Proposition 6.3.9 provides a lower bound on the exponential decay

rate of limk→∞
− ln(P ∗e,f (Dc))

Dc
, since for any Dc,k ↑ ∞, we have a subsequence of µk, such that

D(µk) ≤ Dc,k and therefore P ∗e,f (Dc,k) ≤ Pe(µk). We note that the capacity (C) of the discrete

memoryless channel is given by dE0(ρ,Q∗)
dρ |ρ=0. Let us consider the case when C−δ ≤ λ ln |M| < C,

where δ is a small positive constant. In the following, we show that the lower bound to the expo-

nential decay rate of P ∗e,f (Dc) achieved by the sequence of policies µk approximately matches with

the upper bound on the exponential decay rate of P ∗e,f (Dc), 2
3 (E0(ρ∗,Q∗)− ρλ ln |M|), obtained
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in Proposition 6.3.6. We note that if C − δ ≤ λ ln |M| < C, for small positive δ, then any ρ satis-

fying λ ln |M| < E0(ρ,Q∗)
ρ is approximately zero. Furthermore, ρ∗ is such that λ ln |M| < E0(ρ∗,Q∗)

ρ∗

and is therefore approximately zero. Then, from (6.20), since Eπµk e
ρ∗S ln |M| ≈ eρ

∗λNc,k ln |M|, we

have that Pe(µk) /
r
λ

(
eE0(ρ∗,Q∗)−ρ∗λ ln |M|)−Nc,k , which yields an approximate lower bound on the

exponential decay rate limk→∞
− lnPe(µk)
D(µk) ≈ 2

3 (E0(ρ∗,Q∗)− ρ∗λ ln |M|), which matches with the

upper bound in Lemma 6.3.6.

Recall that PNc(λ) = infDc P
∗
e,Nc

(Dc) for both R-model-A and I-model-A, where we have restricted

to the set of policies Γs,Nc for both models. We have that Proposition 6.3.6 also holds for I-model-

A. The proof of Proposition 6.3.6 holds for I-model-A as: (a) P ∗e,f (Dc) ↓ 0 as Dc ↑ ∞, from

Proposition 6.3.9, and (b) Pe(γk) ≥ PNc,k(λ), which holds since PNc(λ) for R-model-A is a lower

bound to PNc(λ) defined for I-model-A.

We also note that the upper bound Du(Pe,c) holds for I-model-A under a EXH policy which serves

only integer number of message symbols. Hence Proposition 6.3.7 and therefore Proposition 6.3.8

also holds for I-model-A.

Remark 6.3.11. In the next section, we present an asymptotic analysis for R-model-B. We recall

that for R-model-B, the codeword length Nc is fixed. The asymptotic analysis of R-model-B is

significant, since the tradeoff problem for R-model-B is a subproblem for R-model-A with the

restriction to policies in Γs,f . In fact, we study how D∗Nc(Pe,c) behaves as Pe,c ↓ PNc(λ).

6.4 Asymptotic analysis for R-model-B

6.4.1 Problem Statement

We state the tradeoff problem for R-model-B so that it is similar to the definition of the problem

TRADEOFF in Chapter 4. The TRADEOFF problem for R-model-B is

minimizeγ∈Γs

EπγEh(Q,Nc)

λNc

such that
EπγES|Qcs(S(Q), Nc)

λNc
≤ Pe,c,

where h(q,Nc) = qNc + λNc(Nc−1)
2 as defined before, and Pe,c is a constraint on the average error

rate. As in Section 4.2.1, we can show that there exists a set Ou of Pe,c such that there exists a

stationary deterministic optimal policy for Pe,c ∈ Ou. This stationary deterministic policy is optimal

for an unconstrained MDP with single stage cost h(q,Nc) + βPe,ccs(s,Nc), where βPe,c ≥ 0 is a

Lagrange multiplier.

However, we consider the above problem only for a subset Γa ⊂ Γs, which is the set of monotone
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admissible policies. We redefine the set of admissible policies for R-model-B as follows. A policy

γ ∈ Γa if:

RG1 : γ ∈ Γs,

RG2 : it induces an aperiodic, irreducible Harris Markov chain Q[m],

RG3 : the average service rate at a queue length q, ES(q) is non-decreasing in q.

We note the above properties are similar to those defined in Section 4.4 of Chapter 4.

We note that the function cs(s,Nc) is not convex. Consider a Pe,c ∈ Ou and the corresponding

unconstrained MDP with Lagrange multiplier βPe,c . Existing proofs of the monotonicity property of

the optimal policy for the unconstrained MDP, such as those in Goyal et al. [29], require that the

function cs(s,Nc) be convex. We are not able to prove that the batch size is a monotonically non-

decreasing function of the queue length for the optimal policy even if Pe,c ∈ Ou, unlike in Chapter

4. However, we observe that the optimal policy prescribes a batch size which is monotonically

increasing in the queue length in numerical solutions of the MDP. This is the only motivation for

assuming RG3.

The TRADEOFF problem for R-model-B is to obtain D∗Nc(Pe,c) which is the optimal value of

minimizeγ∈Γa

EπγEh(Q,Nc)

λNc

such that
EπγES|Qcs(S(Q), Nc)

λNc
≤ Pe,c.

We note that for every Pe,c such that the above problem is feasible, for every ε > 0, by definition

there is a feasible admissible policy γ such that D(γ) ≤ D∗Nc(Pe,c) + ε. We call such an admissible

policy ε-optimal for Pe,c.

For R-model-B, suppose that Smax >
NcE0(ρ,Q)
ρ ln |M| . As in Chapter 4, we define c(s) : [0, Smax]→ R+

as the lower convex envelope of {(s, cs(s,Nc)), s ∈ [0, Smax]}. Then there exists a s′ < Smax,

which satisfies the following equation:

Smaxe
Nc(E0(ρ,Q)) = eρs

′ ln |M| [Smax + ρ ln |M|s′(Smax − s′)
]
.

We note that the tangent drawn from (Smax, cs(Smax, Nc) = Smax) touches the cs(s,Nc) curve

at (s′, cs(s
′, Nc)). We also note that the definition of s′ is similar to that for R-model-A, except

that for R-model-B, the slope of cs(s,Nc) at s = s′ is not one. Furthermore s′ for R-model-B is

always greater than or equal to s′ for R-model-A. Figure 6.2 shows an example. We note that the

lower convex envelope c(s) = cs(s,Nc), for s ∈ [0, s′] and for s ∈ (s′, Smax), c(s) is the tangent

line segment drawn from (s′, cs(s
′, Nc)) to (Smax, Smax).
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0

Figure 6.2: Illustration of the error cost function cs(s,Nc) and the lower convex envelope c(s). The lower

convex envelope coincides with cs(s,Nc) for all s ∈ [0, s′].

For R-model-B, the infimum of all achievable average probabilities of error, infγ∈Γa Pe(γ), is again

denoted as PNc(λ). Similar to the proof of Lemma 6.3.1, we can show that PNc(λ) = c(λ)
λNc

. In the

following, we obtain an asymptotic lower bound to D∗Nc(Pe,c) as Pe,c ↓ PNc(λ).

6.4.2 Asymptotic analysis

We assume that the following properties hold for A[1].

RA1 : Pr {A[1]− Smax > δa} > εa,

RA2 : Pr
{
A[1] ≤ ∆a

2

}
= ε′a > 0, for some 0 < ∆a < s′.

We note that RA1 is the same as that defined in Section 4.4 of Chapter 4. We also note that the

property RA2, is similar to the property A2 assumed in Section 4.1.2 of Chapter 4, in that there is

a positive probability of the number of arrivals being in an interval including zero.

We note that the service cost function c(s), as defined above, satisfies the following properties,

which are similar to the properties RC1 and RC2 defined in Section 4.4 of Chapter 4.

RC1 : c(0) = 0, and,

RC2 : c(s) is strictly convex for s ∈ [0, s′) and linear for s ∈ [s′, Smax].

The asymptotic behaviour of D∗Nc(Pe,c) as Pe,c ↓ PNc(λ) is different depending on whether λ ≤ s′

Nc

or λ > s′

Nc
. We characterize the asymptotic behaviour in both of these cases in the following.

Lemma 6.4.1. For λ ≤ s′

Nc
, and for any sequence of admissible policies γk with Pe(γk)−PNc(λ) =

Vk ↓ 0 we have that

Q(γk) = Ω

(
1√
Vk

)
.
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Proof. For an admissible policy γ, define C(γ) = Eπγc(S(Q)). We note that as cs(s,Nc) ≥ c(s),

Pe(γk) =
Eπγ cs(S(Q),Nc)

λNc
≥ C(γk)

λNc
. Then we have that there exists a sequence Uk such that Uk =

C(γk)− c(λ) ≤ λNc (Pe(γk)− PNc(λ)) = λNcVk ↓ 0. Let us consider a particular policy γ in the

sequence γk with Uk = U and πγk = π. To obtain a lower bound on Q(γ) we proceed, as in the

proof of Proposition 4.4.2, with qd = sup {q : ES(q) ≤ λNc + εU} where εU will be chosen in the

following. We follow all the steps in the proof of Proposition 4.4.2, with qd as above and εU in

place of εV , up to the step where Q(γ) is bounded below by k2∆
2 , where the k2 is the largest integer

satisfying the inequality (4.27). That is, we have that Q(γ) ≥ k2∆
2 , where k2 is the largest integer,

such that (
1 +

εU
δεa

)k2

≤ 2

1 + 2Dt
,

where Dt = 1
εU

∫∞
qd

(ES(q) − λNc)dπ(q). We note that in Proposition 4.4.2, a lower bound on k2

was obtained via the upper bound 1
4 on Dt. We note that, unlike in Proposition 4.4.2, the function

c(s) is not strictly convex for s ∈ [0, Smax]. So we derive an upper bound on Dt in a slightly

different way. Define qλ = sup {q : ES(q) ≤ λNc}. Let l(s) be the tangent line to the curve c(s)

at (λ, c(λ)). We have that Eπ {c(S(Q))− l(S(Q))} = U . That is,∫ ∞
0

E {c(S(q))− l(S(q))} dπ(q) = U.

As c(s) ≥ l(s) we have that ∫ qλ

0
E {c(S(q))− l(S(q))} dπ(q) ≤ U.

As c(s) is convex and l(s) is linear we have that∫ qλ

0
{c(ES(q))− l(ES(q))} dπ(q) ≤ U.

We note that for λ ≤ s′

Nc
, there exists an a1 > 0 such that c(s)− l(s) ≥ a1(s−λNc)

2 for s ≤ λNc.

Furthermore as for q ≤ qλ,ES(q) ≤ λNc, we have that∫ qλ

0
(ES(q)− λNc)

2 dπ(q) ≤ U

a1
,

which can be written as ∫ qλ

0
(ES(q)− λNc)

2 dπ(q) +

∫ ∞
qλ

0dπ(q) ≤ U

a1
.
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By Jensen’s inequality we then have that(∫ qλ

0
(ES(q)− λNc) dπ(q) +

∫ ∞
qλ

0dπ(q)

)2

≤ U

a1
.

Hence we obtain that ∫ qλ

0
(ES(q)− λNc) dπ(q) ≥ −

√
U

a1
. (6.23)

Now we note that for an admissible policy γ,∫ ∞
0

(ES(q)− λNc) dπ(q) = 0, or,∫ qλ

0
(ES(q)− λNc) dπ(q) +

∫ qd

qλ

(ES(q)− λNc) dπ(q) +

∫ ∞
qd

(ES(q)− λNc) dπ(q) = 0.

For q > qλ, ES(q) > λNc, so that
∫ qd
qλ

(ES(q)− λNc) dπ(q) > 0, which implies that

∫ qλ

0
(ES(q)− λNc) dπ(q) +

∫ ∞
qd

(ES(q)− λNc) dπ(q) ≤ 0,∫ ∞
qd

(ES(q)− λNc) dπ(q) ≤ −
∫ qλ

0
(ES(q)− λNc) dπ(q) ≤

√
U

a1
,

from (6.23). Therefore we obtain that Dt ≤ 1
εU

√
U
a1

. We choose εU = 4
√

U
a1

, and proceed as in

the proof of Proposition 4.4.2 to obtain that Q(γ) ≥ ∆
2

(
log(

1+
εU
δεa

) (4
3

)
− 1

)
. Therefore, for the

sequence of policies γk, we have that Q(γk) = Ω
(

1√
Uk

)
= Ω

(
1√
Vk

)
as Uk ≤ λNcVk.

Remark 6.4.2. We note that if Smax is such that Smax ≤ NcE0(ρ,Q)
ρ ln |M| , then for all λ < Smax

Nc
, the

above asymptotic lower bound would hold.

Proposition 6.4.3. For λ ≤ s′

Nc
, as Pe,c ↓ PNc(λ), we have that

D∗(Pe,c) = Ω

(
1√

Pe,c − PNc(λ)

)
.

Proof. Consider the sequence of policies γ∗k which are ε-optimal for TRADEOFF for a sequence pk

of Pe,c such that pk ↓ PNc(λ) for some ε > 0. Since Pe(γ
∗
k) ≤ pk, we have that from Lemma 6.4.1

that Q(γ∗k) = Ω

(
1√

pk−PNc (λ)

)
. Since D∗(pk) ≥ 1

λNc

[
Q(γ∗k) + λ

2Nc(Nc − 1)
]
− ε, we obtain that

D∗(pk) = Ω

(
1√

pk−PNc (λ)

)
.

Remark 6.4.4. We note that an asymptotic upper bound, which is tight upto a logarithmic factor,

can be obtained for the above case, using a sequence of policies as in Lemma 4.4.3. We note that
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for this sequence of policies, it is possible to choose batch sizes s such that cs(s,Nc) = c(s).

In the following, we obtain an asymptotic lower bound to D∗Nc(Pe,c) as Pe,c ↓ PNc(λ) for λ > s′

Nc
.

This lower bound is obtained by extending Lemma 4.3.8 to the case when the state space of the

Markov chain is the set of non-negative real numbers. As in Lemma 4.3.5 we first obtain a lower

bound on the queue length as a function of the stationary probability of the queue length being in

a certain set. Then we relate the stationary probability of the queue length being in the above set

to the average error rate.

Let qs′
∆
= inf {q : ES(q) ≥ s′ − ε}, where ε is a small positive constant, chosen such that ∆a < s′−ε,

where ∆a is as in RA2. We note that for an admissible policy γ, EπES(Q) = λNc, and therefore

there would exist finite q, for which ES(q) ≥ λNc. Thus, qs′ is finite. The following lemma shows

that for a queue length q ≥ qs′ , there is a positive minimum probability of serving at least a certain

number of customers.

Lemma 6.4.5. For an admissible policy γ, with qs′ defined as above, for ∆a as in RA2, we have

that infq≥qs′ Pr {S(q) > ∆a} ≥ δs > 0, where δs = s′−ε−∆a
Smax−∆a

.

The proof of this lemma is similar to that of Lemma 5.7.1 and is presented in Appendix 6.C.

Lemma 6.4.6. For λ > s′

Nc
, and for any sequence of admissible policies γk with Pe(γk)−PNc(λ) =

Vk ↓ 0, we have that

Q(γk) = Ω

(
log

(
1

Vk

))
.

Proof. For an admissible policy γ, define C(γ) = Eπγc(S(Q)). We note that as cs(s,Nc) ≥ c(s),

we have that there exists a sequence Uk such that Uk = C(γk)− c(λ) ≤ λNc (Pe(γk)− PNc(λ)) =

λNcVk ↓ 0. We consider a particular policy γ in the sequence γk with Uk = U and πγk = π. As in

the proof of Lemma 5.7.2, since γ is admissible, we have that if m1 is the largest integer such that

π [0, qs′) + π[0, qs′)

[(
1 +

1

ρ

)m1

− 1

]
= π [0, qs′)

(
1 +

1

ρ

)m1

≤ 1

2
, (6.24)

thenQ(γ) ≥ m1∆
4 . Let us define the line l(s) as the line passing through (s′, c(s′)) and (Smax, c(Smax)).

For the policy γ we have that∫ ∞
0

E {c(S(q))− l(S(q))} dπ(q) = U.

As c(s) is convex and l(s) is linear we have that∫ ∞
0
{c(ES(q))− l(ES(q))} dπ(q) ≤ U.
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Also as c(s) ≥ l(s), ∫ qs′

0
{c(ES(q))− l(ES(q))} dπ(q) ≤ U.

We note that for q < qs′ we have that ES(q) < s′ − ε and there exists a1 > 0 such that

c(ES(q))− l(ES(q)) ≥ a1(ES(q)− s′)2. Hence we obtain that∫ qs′

0

(
ES(q)− s′

)2 ≤ U

a1
,

and as q < qs′ , (ES(q)− s′)2 > ε2. Therefore we obtain that∫ qs′

0
ε2dπ(q) ≤ U

a1
.

And hence π[0, qs′) ≤ U
a1ε2

.

From (6.24), if m2 is the largest integer such that(
1 +

1

ρ

)m2

≤ a1ε
2

2U
, or ,

m2 ≤ log(
1+ 1

ρ

)(a1ε
2

2U

)
,

then m2 ≤ m1. We note that m2 is at least⌊
log(1+ 1

ε )

(
a1ε

2

2U

)⌋
.

Since Q(γ) ≥ m∆a
4 ≥ m1∆a

4 ≥ m2∆a
4 , we obtain that

Q(γ) ≥ ∆a

4

(
log(1+ 1

ε )

(
a1ε

2

2U

)
− 1

)
.

So for the sequence of policies γk with Uk ↓ 0 we have thatQ(γk) = Ω
(

log
(

1
Uk

))
= Ω

(
log
(

1
Vk

))
.

Proposition 6.4.7. For λ > s′

Nc
, as Pe,c ↓ PNc(λ), we have that

D∗(Pe,c) = Ω

(
log

(
1

Pe,c − PNc(λ)

))
.

The proof of the above result is similar to that of Proposition 6.4.3.

Remark 6.4.8. An asymptotic upper bound to D∗Nc(Pe,c), as Pe,c ↓ PNc(λ) can be obtained from

Lemma 4.3.10. We note that in this case, sl = s′ and su = Smax. Then, as in Lemma 4.3.10 we
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can show that there exists a sequence of admissible policies γk, for which D∗(Pe,c) = O
(

log
(

1
Vk

))
and Pe(γk)− PNc(λ) = Vk ↓ 0. We note that Pe(γk) can be computed as in Lemma 4.3.10 since

cs(s
′, Nc) = c(s′) and cs(Smax, Nc) = c(Smax).

Remark 6.4.9. We can set up a queueing model I-model-B, which is similar to R-model-B, ex-

cept that q0 ∈ Z+, A[m] ∈ {0, 1, . . . , Amax ∈ Z+}, and S[m] ∈ {0, 1, . . . , Smax} ,m ≥ 1.

Therefore, for I-model-B the queue length evolution is on Z+. We note that queueing model

I-model-B is analogous to I-model-A. Asymptotic lower bounds to D∗Nc(Pe,c) can be obtained as

in Section 4.3.3 of Chapter 4, with c(s) defined as the piecewise linear lower convex envelope of

{(s, cs(s,Nc)), s ∈ {0, . . . , Smax}}. Asymptotic upper bounds to D∗Nc(Pe,c) can be obtained as in

Remark 6.4.8.

Remark 6.4.10. For R-model-B, we note that asymptotic lower bounds can be derived for other

approximations for cs(s,Nc), if the lower convex envelopes for such approximations have the same

form as c(s) above. We note that the asymptotic nature of the bounds only depended on: (a) c(s)

being strictly convex in [0, s′], and (b) c(s) being linear in (s′, Smax]. In Appendix 6.E we consider

some examples for the approximation c̃s(s,Nc) instead of cs(s,Nc) for the error cost, where

c̃s(s,Nc) = min
ρ∈[0,1]

se−NcE0(ρ,Q)+ρs ln |M|,

and illustrate that the lower convex envelope c̃(s) of c̃s(s,Nc) as a function of s has a similar form

as c(s).

We note that instead of using Gallager’s random coding upper bound we could also use Polyanskiy’s

normal approximation for the codeword error probability to derive an approximation for cs(s,Nc).

From [49], if 0 ≤ s ≤ CNc
log2 |M|

, then we have that the codeword error probability Pe,b satisfies the

following approximation:

Nc ≈

(
Q−1(Pe,b)

1− s log2 |M|
NcC

)2
V

C2
,

where Q is the Gaussian Q function, C is the channel capacity (in bits/channel use), and V is the

channel dispersion. Then, we have that

Pe,b ≈ Q

(√
NcC2

V

(
1− s log2 |M|

NcC

))
,

and the approximation

c̃s(s,Nc) = sQ

(√
NcC2

V

(
1− s log2 |M|

NcC

))
.

We note that if s > CNc
log2 |M|

, then we have the approximation c̃s(s,Nc) = s.
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It can be shown that if Smax log2 |M|
Nc

≤ C, then c̃s(s,Nc) is strictly convex in s. Then, as in

Proposition 6.4.3, we have that for any λ < C
Nc

, as Pe,c ↓ PNc(λ), we have that D∗(Pe,c) =

Ω

(
1√

Pe,c−PNc (λ)

)
.

6.5 Conclusions

We have shown that for R-model-A (from Proposition 6.3.6) as well as I-model-A (the discussion in

Section 6.3.3), the exponential decay of average error rate with average delay is at most two-thirds

of the Gallager random coding exponent, when we restrict attention to the set Γs,f of policies. We

also note that for I-model-A, for information arrival rate λ ln |M| approaching the capacity of the

channel, a sequence of policies ∈ Γs,f , that uses a fixed service rate, approximately achieves the

best exponential decay rate of two-thirds of the Gallager random coding exponent. We note that

the 2
3 factor arises because of the fundamental limitation of block codes; message symbols arriving

in a transmission period of duration Nc have an average waiting period of Nc
2 until the succeeding

transmission period and have to wait for at least an additional Nc slots before leaving the queue.

Therefore, the average delay is at least 3
2Nc. So naturally the question arises whether streaming

codes have a better exponential decay rate. In [57], we show that a sequence of fixed rate randomly

time varying streaming codes, with increasing constraint lengths achieve an exponential decay rate

of average error rate with average delay which is equal to the Gallager random coding exponent.

We then considered the exponential decay rate for a sequence of exhaustive service policies, which

ensure a constant block error probability per transmission by varying the codeword length. We

obtain that for the above sequence of policies, the exponential decay rate is at least two-thirds of

the Gallager random coding exponent. The performance of such policies has been studied in detail

in [53], [54], [55], [59], and [60]. We note that the above exponential decay rate provides a lower

bound to the exponential decay rate achievable by a sequence of policies in Γs. However, we do

not have an upper bound on the exponential decay rate over any sequence of policies in Γs.

The analysis of R-model-B illustrates the application of the lower bounding technique in Chapter 4

to cases where the service cost function is not convex. We observe that the asymptotic lower bound

depends on the nature of the lower convex envelope of the service cost function at λ. Since the lower

convex envelope c(s) is convex, the analysis and observations from Chapter 4 apply. We note that

the form of c(s) considered in this chapter is not strictly convex or piecewise linear, but piecewise

convex. The asymptotic upper bounds show that a sequence of admissible policies using only the

service rates s for which the service cost cs(s,Nc) = c(s) is order optimal (only for the log
(

1
V

)
case). We note that this is reminiscent of Crabill’s exclusion principle4 for the control of M/M/1

4which states that for a M/M/1 queue with controllable service rates, the stationary optimal policy that minimizes
the time average of the single stage cost Q(t) + βcs(µ(Q(t))) (β > 0), uses only service rates which are such that
cs(s) = c(s), where c(.) is the lower convex envelope of the service cost function cs(.).
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queues with non-convex service costs [25], but optimality in our case is only in the asymptotic order

sense. From this analysis, we can conclude that an asymptotic characterization of the minimum

average queue length in the asymptotic regime < for admissible policies, can be obtained from the

techniques in Chapter 4 by considering the lower convex envelope of the service cost function, even

if the service cost function is not convex.
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Appendices

6.A Optimization problem (6.11)

Consider the optimization problem (6.11) :

minimize
π

1

λNc
Eπ
[
Smin

(
1, e−NcE0(ρ,Q)+ρS ln |M|

)]
(6.25)

such that EπS ≥ λNc + ε,

where π is any distribution for S and ε ≥ 0. We denote the optimal value of the above problem by

pe(ε). For any distribution π, we have that the point(
EπS,

1

λNc
Eπ
[
Smin

(
1, e−NcE0(ρ,Q)+ρS ln |M|

)])
,

lies in the convex hull of the set of points(
s,

1

λNc

[
smin

(
1, e−NcE0(ρ,Q)+ρs ln |M|

)])
, s ∈ R+.

With the constraint EπS ≥ λNc + ε, it is clear that the there would exist some distribution π′

such that the point (Eπ′S, 1
λNc

Eπ′
[
Smin

(
1, e−NcE0(ρ,Q)+ρS ln |M|)]), with Eπ′S = λNc + ε, lies

on the lower convex envelope of cs(s,Nc)
λNc

(the curve AC, as shown in Figure 6.3(a)). Therefore, π′

is optimal, and we have that

pe(ε) =


λNc+ε
λNc

e−NcE0(ρ,Q)+ρ(λNc+ε) ln |M| if 0 ≤ (λNc + ε) ≤ s′,
1

λNc

(
((λNc + ε)− s′) + s′e−NcE0(ρ,Q)+ρs′ ln |M|

)
otherwise,

(6.26)

where s′ is such that
d{se−NcE0(ρ,Q)+ρs ln |M|}

ds |s=s′ = 1.

A

B C

(a) Illustration of the convex hull (the region

between and including the curves AB and AC)

and the optimal values pe(ε1) and pe(ε2).

A

B C

(b) Illustration of the (δ, ε)-optimal distri-

bution : (i) for ε1, the distribution has

Pr {S = λNc + ε1} = 1, and (ii) for ε2, the

distribution puts mass at s′ and s1.
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Now we obtain distributions which are (δ, ε)-optimal, where δ > 0. A distribution d is said to be

(δ, ε)-optimal for (6.25) if

EdS = λNc + ε, and,
1

λNc
Ed
[
Smin

(
1, e−NcE0(ρ,Q)+ρS ln |M|

)]
= pe(ε) + δ.

We note that if : (i) λNc + ε ≤ s′ then the distribution that gives probability 1 to λNc + ε is (δ, ε)-

optimal ∀δ ≥ 0, (ii) λNc + ε > s′ and δ ≥ δb = s′− s′e−NcE0(ρ,Q)+ρs′ ln |M| then a distribution that

gives probability one to λNc + ε is δ-optimal, and (iii) λNc + ε > s′ and δ < δb, then a distribution

that gives mass to two points s′ and s1, characterized in the following lemma, is (δ, ε)-optimal.

Lemma 6.A.1. If λNc+ε > s′ and δ < δb, then the distribution d defined as follows is (δ, ε)-optimal.

Let s1 = s′

δ [(λNc + ε− s′) + δ]− cs(s′,Nc)(λNc+ε−s′)
δ .

Pr
{
S = s′

}
=
s1 − (λNc + ε)

s1 − s′
,

P r {S = s1} =
λNc + ε− s′

s1 − s′
.

We provide an outline of the proof. We note that if the distribution needs to achieve only pe(ε) +

δ, then we can choose the points p1 = (s1, cs(s1, Nc)) (as shown in Figure 6.3(b)) and p2 =

(s′, cs(s
′, Nc)). The point (λNc + ε, pe(ε) + δ) lies on the line joining these two points and is

therefore a convex combination of the points p1 and p2. Solving for s1 and the convex combination

leads to the proof of the above lemma.

We note that the (δ, ε)-optimal distribution has finite support for any δ > 0 and ε > 0.

6.B Proof of Proposition 6.3.7

Proof. For the policy e, under stationary conditions, we have thatQ = s(Q) and τ(s) = das+ be ,∀s.

Suppose EπeQ < ∞ for e, then we have that EπeQ = λEπeτ(Q). For brevity, in this proof we

use E [.] to denote Eπe [.]. Since as + b ≤ τ(s) ≤ as + b + 1, we obtain that EQ ≥ bλ
1−aλ and

EQ ≤ (b+1)λ
1−aλ . Also b

1−aλ ≤ Eτ(Q) ≤ b+1
1−aλ . We also have that

EQ2 = σ2Eτ(Q) + λ2Eτ(Q)2,

≤ σ2(aEQ+ b+ 1) + λ2
(
a2EQ2 + (b+ 1)2 + 2a(b+ 1)EQ

)
or,

EQ2 ≤
(b+ 1)σ2 + (b+ 1)2λ2 + (b+1)λ

1−aλ (aσ2 + 2a(b+ 1)λ2)

(1− a2λ2)
.

For the policy e, EQ ≤ EQ(aQ+b+1)+E (aQ+b)(aQ+b+1)λ
2

Eτ(Q) . Substituting the upper bounds for EQ2, and

EQ, and the lower bound for Eτ(Q) in the above expression leads to the upper bound on the
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average queue length for the EXH policy.

6.C Proof of Lemma 6.4.5

Proof. We note that qs′ = inf {q : ES(q) ≥ s′ − ε}, for ε such that 0 < ε < s′ −∆, for ∆ in RA2.

We note that by definition, ∀q ≥ qs′ ,

ES(q) ≥ s′ − ε,∫ Smax

0
S(q).dP (S(q)) ≥ s′ − ε. (6.27)

Then, ∫ ∆

0
∆dP (S(q)) +

∫ Smax

∆
SmaxdPS(q) ≥ s′ − ε,

∆ (1− Pr {S(q) > ∆}) + SmaxPr {S(q) > ∆} ≥ s′ − ε, or,

P r {S(q) > ∆} ≥ s′ − ε−∆

Smax −∆
.

Thus for any q ≥ qs′ , Pr {S(q) > ∆} ≥ δs > 0, where δs = s′−ε−∆
Smax−∆ .

6.D Upper bound for average queue length for the policy µ in Propo-

sition 6.3.4

For the policy µ with parameters Nc and r, we have that a batch of size s(q) = min(q, rNc) is

served when the queue length is q. We note that if the arrival distribution is such that Amax < r,

so that A[1] < rNc, then the average queue length EµQ = λNc.

The following upper bound, holds for any arrival distribution with EA2 = E
(
A[1]2

)
< ∞. From

(6.1) we have that

E
{
Q[m+ 1]2 −Q[m]2

∣∣Q[m] = q
}

= −2q(s(q)− λNc) + EA2 + s(q)2 − 2s(q)λNc,

= −2qNc(r − λ) + 2q(rNc − s(q)) + EA2 + s(q)2 − 2s(q)λNc.

Now, by taking expectations with respect to the stationary distribution π of µ, we have that

EπQ =
1

2Nc(r − λ)

[
2Eπ [Q(rNc − s(Q))] + EA2 + Eπs(Q)2 − 2λ2N2

c

]
,

=
1

2Nc(r − λ)

[
σ2Nc + 2Eπ [Q(rNc − s(Q))] + Eπs(Q)2 − λ2N2

c

]
. (6.28)

We now simplify and provide an upper bound for 2Eπ [Q(rNc − s(Q))] + Eµs(Q)2 − λ2N2
c .
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We denote the stationary probability Pr {s(Q) = rNc} = Pr {Q > rNc} by pr. Then we have that

2Eπ [Q(rNc − s(Q))] + Eπs(Q)2 − λ2N2
c

= 2

∫
q<rNc

q(rNc − q)dπ(q) +

∫
q<rNc

q2dπ(q) + prr
2N2

c − λ2N2
c ,

= 2

∫
q<rNc

qrNcdπ(q)−
∫
q<rNc

q2dπ(q) + prr
2N2

c − λ2N2
c ,

= 2rNc [λNc − prrNc]−
∫
q<rNc

q2dπ(q) + prr
2N2

c − λ2N2
c ,

= 2rλN2
c −

∫
q<rNc

q2dπ(q)− prr2N2
c − λ2N2

c ,

= λN2
c (r − λ) + rλN2

c − prr2N2
c −

∫
q<rNc

q2dπ(q). (6.29)

Therefore,

2Eπ [Q(rNc − s(Q))] + Eπs(Q)2 − λ2N2
c ≤ λN2

c (r − λ) + rλN2
c . (6.30)

Substituting in (6.28), we obtain that

EπQ ≤
σ2

2(r − λ)
+
λNc

2
+

rλNc

2(r − λ)
.

We now present another upper bound on 2Eπ [Q(rNc − s(Q))] + Eπs(Q)2 − λ2N2
c , obtained by

lower bounding pr in (6.29). The lower bound on pr is obtained under the assumption that

Pr {A[1] ≥ rNc} > 0. Let pl = 1 − pr. We note that pl is the fraction of time a batch size

less than rNc is used. We note that the evolution of (Q[m]) can be divided into cycles of random

duration. Each cycle comprises of two periods, where each period is also of random duration. The

first period starts in slot m, if Q[m − 1] ≥ rNc and Q[m] < rNc. The duration of the first

period is distributed according to a Geometric distribution with mean 1
Pr{A[1]≥rNc} . Following the

first period, we have the second period which starts in a slot m such that Q[m − 1] < rNc and

Q[m] ≥ rNc. We note that throughout the second period the queue length is greater than or equal

to rNc and a batch service of rNc occurs in each slot.

Let Qp be the random queue length at the start of the second period. We note that Qp ∼ A[1]

conditioned on {A[1] ≥ rNc}. Let Qp = qp. Since (Q[m]) is Markov, the duration of the second

period Tp(qp) is then

Tp(qp) = min

{
t : qp +

t∑
m=1

[A[m]− rNc] < rNc

}
.

Then, applying Wald’s lemma for qp, and taking expectations over the distribution of Qp, we have
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that

ETp(Qp) ≥
E[A[1]|A[1]≥rNc] [Qp − rNc]

rNc − λNc
.

We note that

pl =

1
Pr{A[1]≥rNc}
1

Pr{A[1]≥rNc} + ETp(Qp)
,

≤
1

Pr{A[1]≥rNc}
1

Pr{A[1]≥rNc} +
E[A[1]|A[1]≥rNc][Qp−rNc]

rNc−λNc

.

Since E[A[1]|A[1]≥rNc]Qp =

∫
a≥rNc adPA[1](a)

Pr{A[1]≥rNc} , we have that

pl ≤
1

1 +

[∫
a≥rNc (a−rNc)dPA[1](a)

]
rNc−λNc

,

=
Nc(r − λ)

Nc(r − λ) +
[∫
a≥rNc(a− rNc)dPA[1](a)

] .
Therefore,

pr ≥

[∫
a≥rNc(a− rNc)dPA[1](a)

]
Nc(r − λ) +

[∫
a≥rNc(a− rNc)dPA[1](a)

] .

Substituting the above lower bound in the RHS of (6.29) and using
∫
q<rNc

q2dπ(q) ≥ 0, we have

that 2λN2
c (r − λ) + λN2

c

(
λ− prr2

λ

)

≤ 2λN2
c (r − λ) +N2

c

λ2 −

[∫
a≥rNc(a− rNc)dPA[1](a)

]
Nc(r − λ) +

[∫
a≥rNc(a− rNc)dPA[1](a)

]r2

 .

The above expression can then be simplified to

2λN2
c (r − λ) + (r − λ)N2

c

(
λ2Nc −

[∫
a≥rNc(a− rNc)dPA[1](a)

]
(r + λ)

)
Nc(r − λ) +

[∫
a≥rNc(a− rNc)dPA[1](a)

] . (6.31)

Therefore, 2Eπ [Q(rNc − s(Q))] + Eπs(Q)2 − λ2N2
c

≤ 2λN2
c (r − λ) + (r − λ)N2

c

(
λ2Nc −

[∫
a≥rNc(a− rNc)dPA[1](a)

]
(r + λ)

)
Nc(r − λ) +

[∫
a≥rNc(a− rNc)dPA[1](a)

] . (6.32)
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Figure 6.3: Illustration of c̃s(s,Nc) and its lower convex envelope, for Nc ∈ {100, 150, 200}, for the param-

eters in Example 1

Substituting in (6.28), we obtain that

EπQ ≤
σ2

2(r − λ)
+ λNc +

Nc

2

(
λ2Nc −

[∫
a≥rNc(a− rNc)dPA[1](a)

]
(r + λ)

)
Nc(r − λ) +

[∫
a≥rNc(a− rNc)dPA[1](a)

] .

6.E Examples for c̃s(s,Nc) in Remark 6.4.10

In this section we provide representative numerical examples which illustrate that the lower convex

envelope c̃(s) of c̃s(s,Nc) has a similar form as c(s). The transition probability matrices and the

input distribution Q have been generated randomly for these examples.

Example 1 : For this example we take |M| = 2, and a DMC with |X | = 5 and |Y| = 10. The

transition probability matrix PY |X is :



0.0459 0.2101 0.1339 0.1138 0.1094 0.1212 0.0348 0.1859 0.0309 0.0140

0.0108 0.2152 0.0646 0.0593 0.0210 0.0341 0.2328 0.1601 0.0612 0.1409

0.1251 0.1038 0.0403 0.1645 0.1146 0.1375 0.0872 0.0727 0.0657 0.0886

0.0728 0.1252 0.1291 0.1038 0.0062 0.1191 0.1417 0.1202 0.1211 0.0607

0.1000 0.1678 0.0060 0.1042 0.0149 0.1505 0.1352 0.0174 0.1673 0.1368


The input distribution Q is (0.2018, 0.2551, 0.2515, 0.0943, 0.1972). Then the numerically obtained

c̃s(s,Nc) for three values of Nc is shown in Figure 6.3.
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Figure 6.4: Illustration of c̃s(s,Nc) and its lower convex envelope, for Nc ∈ {100, 150, 200}, for the param-

eters in Example 2

Example 2 : For this example we take |M| = 20, and a DMC with |X | = 5 and |Y| = 5. The

transition probability matrix PY |X is :



0.0649 0.2915 0.1642 0.1986 0.2808

0.1557 0.2722 0.0509 0.1063 0.4148

0.1883 0.1538 0.2409 0.1187 0.2984

0.4160 0.0809 0.0959 0.2615 0.1457

0.0860 0.2355 0.2115 0.1459 0.3212


The input distribution Q is (0.0739, 0.0141, 0.2423, 0.3808, 0.2889). Then the numerically obtained

c̃s(s,Nc) for three values of Nc is shown in Figure 6.4. We note that in all these cases the form of

the lower convex envelope of c̃s(s,Nc) is the same as that illustrated in Figure 6.2.
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CHAPTER 7

Conclusions and Scope for Future Work

We first summarize the main results which are obtained in this thesis. Motivated by the already

available results on the monotonicity property of any stationary deterministic optimal policy for the

unconstrained tradeoff problem, in this thesis we consider the constrained tradeoff problem for the

set of admissible policies, which are defined to be monotone.

In Chapters 2 and 3, for the state dependent M/M/1 model, using geometric bounds on the sta-

tionary probability distribution of the queue length for admissible policies, we obtain the asymptotic

behaviour of the solution to the constrained tradeoff problem for admissible policies in the regime

<, as well as asymptotic bounds on any sequence of order optimal admissible policies. We identify

a case in which the average queue length grows only to a finite value in the regime <. For the cases

for which the average queue length grows without bound, we show that the asymptotic behaviour of

the average queue length is either Θ
(
log
(

1
V

))
, Θ
(

1
V

)
, or Θ

(
1√
V

)
. The asymptotic behaviour of

the average queue length is determined by: (i) the nature of the service cost function, i.e., whether

it is piecewise linear, a corner point, or strictly convex, at the value of λ or u−1(uc), and (ii) the

extent of freedom that we have in the control of the arrival rates (λ(q)) and service rates (µ(q)).

Guided by the analysis in Chapters 2 and 3, we obtain asymptotic bounds for the solution of the

constrained tradeoff problem for a discrete time model with a fixed environment state in Chapter

4. We again consider admissible policies, for which geometric bounds on the stationary probability

distribution for the queue length are obtained. The forms of these geometric bounds are motivated

by the geometric bounds which were derived for state dependent M/M/1 model in Chapters 2

and 3. Using these geometric bounds, asymptotic lower bounds are derived for the solution to the

constrained tradeoff problem in the regime <. Asymptotic upper bounds are also derived, using
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which a complete asymptotic characterization of the tradeoff in the regime < is obtained in two

cases. Asymptotic bounds on any sequence of order-optimal admissible policies are also derived.

In Chapter 5, we first consider the tradeoff of average power and average delay for a noisy point-to-

point link with fast fading. Asymptotic bounds for the solution to the constrained tradeoff problem,

for admissible policies, in the regime < are then derived by extending the results of Chapter 4.

We also compare the asymptotic lower bounds which are obtained from a real valued approximate

queueing model to those from the original integer valued queueing model. We find that the real

valued approximate queueing model with a strictly convex cost function underestimates the average

service cost and average delay for the original model. We show that a more appropriate approximate

real valued queueing model is one in which the service cost function is the piecewise linear lower

convex envelope of the service cost function for the original model. We also obtain asymptotic

lower bounds for the constrained tradeoff problem for: (i) a model with admission control, and (ii)

a single hop network model. Asymptotic lower bounds are also obtained for the case when the

arrival process and fading process are ergodic.

In Chapter 6, we consider the tradeoff of average error rate and average delay for a noisy point-

to-point link. We obtain the exponential decay rate of average error rate with respect to average

delay, in the regime of large average delay, for fixed length random block coding schemes, with

control on the codeword length parameter Nc. Using results from Chapter 4, we then obtain an

asymptotic characterization of the tradeoff of average error rate and average delay, for the set of

admissible policies, for a fixed Nc. One of the main contributions in Chapter 6 is the analysis of

the constrained tradeoff problem for a non-convex service cost function, unlike the convex service

cost functions in the earlier chapters. We show that the asymptotic behaviour of the tradeoff in

the regime < is determined by the lower convex envelope for any non-convex service cost function.

7.1 Scope for future work

We note that all the asymptotic bounds obtained in this thesis are order bounds. From numerical

computation, we have observed that the constants which are involved in the upper and lower bounds

are weak. Tight non-asymptotic bounds for the constrained tradeoff problem are still not available.

We now discuss some specific problems that arise from the analysis in the previous chapters, for

which some initial results have been obtained.
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7.1.1 Order optimality of policies obtained from a fluid model

A simpler deterministic model for the evolution of the queue length, for the state dependent M/M/1

model in Chapter 2, is the trajectory q(t) obtained from the fluid model:

dq(t)

dt
= λ− µ(t), q(0) = q0, (7.1)

where µ(t) is the service rate at time t. The fluid model can be interpreted as a limiting form

of the evolution of the integer valued queue length, when both time as well as queue length are

scaled. Such fluid models can also be obtained for the discrete time model in Chapter 4, as well

as for general networks, e.g. [36, Chapter 10]. In [36, Chapter 10] and [17], it is shown that the

policy µ(t) which minimizes the total cost J(q0) for the deterministic fluid model, can be used to

obtain good policies for the unconstrained MDP for the original stochastic state dependent M/M/1

model. Our objective is to investigate the order optimality of policies which are obtained from fluid

models in the asymptotic regime <.

The state transition diagram for the unconstrained MDP is the same as that in Figure 2.1, with the

action at each state q being the service rate µ(q) ∈ {0, µ1, · · · , µK}. We also note that the optimal

policy for the MDP with single stage cost q + βc(µ) is the same as that for the MDP with single

stage cost q + β(c(µ) − c(λ)). We construct a heuristic policy for the model, when c(µ) = µ2,

for µ ∈ S = {0, µ1, . . . , µK}, based upon the analysis in Chen et al. [17]. As in Chen et al. [17],

we consider the fluid model (7.1), with a modified single stage cost q + β [c(µ)− c(λ)]+ and the

service rate at time t, µ(t) ∈ R+. Then

J(q0) = inf
µ(t)

∫ ∞
0

{
q(t) + β [c(µ(t))− c(λ)]+

}
dt.

If c(µ) = µ2, then from [17] we have that J(q) = 2
3q

3
2

(
1
β

) 1
2

. Furthermore the optimal service rate

function µ∗(t) for which

J(q0) =

∫ ∞
0

{
q(t) + β [c(µ∗(t))− c(λ)]+

}
dt,

is given by the state dependent policy µ∗(q) = (q/β)
1
2 + c(λ). Motivated by this development, we

define the fluid policy γF,β for our M/M/1 model as choosing the service rate

µF,β(q) =
[
(q/β)

1
2

]
S
,

where [x]S means that we pick a service rate in S which is closest to the argument x. Interestingly,

the policy γF,β does not depend on λ but varies only as a function of β. We note that γF,β is

admissible for any λ < µK , since there exists a queue length q such that µF,β(q) = µK and from
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the definition, µF,β(q) is non-decreasing in q. We illustrate the order optimality of γF,β only for

case 2. We first obtain an upper bound on Q(γF,β) using Proposition 2.A.1. It can be shown that

for ε > 0, if there exists a qε such that µF,β(qε)− λ ≥ ε, then Q(γF,β) ≤ qε(ε+λ)
ε + λ+µK

2ε .

We note that if λ < µK , for case 2, we can pick ε = µu − λ. Then qε ≤ β
(
µku−1+µu

2

)2
+ 1. Thus

we obtain that Q(γF,β) = O(β).

We have that C(γF,β)

=
∑
k<kl

πµ(k)c(µk) +
∑
k>ku

πµ(k)c(µk) +

ku∑
k=kl

πµ(k)c(µk),

≤ c(µkl−1)Pr {µF,β(Q) < µl}+ c(µK)Pr {µF,β(Q) > µu}

+c(λ) +

ku∑
k=kl

πµ(k)m(λ− µk), (7.2)

where m is the slope of the line joining (µl, c(µl)) and (µu, c(µu)). We note that since γF,β is admis-

sible,
∑K

k=0 πµ(k)µk = λ. Hence, we have that
∑

k<kl
πµ(k) (µk − λ) +

∑
k>ku

πµ(k) (µk − λ) =∑ku
k=kl

πµ(k) (λ− µk). Since for k < kl, µk < λ, we have that
∑ku

k=kl
πµ(k) (λ− µk) ≤ (µK − λ)Pr {µF,β(Q) > µu}.

We note that Pr {µF,β(Q) > µu} =
∑

q>qku
π(q) and Pr {µF,β(Q) < µl} =

∑
q≤qkl−1

π(q). From

the birth-death structure of Q(t) under γF,β, we can show that

∑
q>qku

π(q) ≤ π(qku + 1)

(
µku+1

µku+1 − λ

)
,

∑
q≤qkl−1

π(q) ≤ π(qkl−1)

1−
(
µkl−1

λ

)qkl−1+1

1− µkl−1

λ

 .

We note that π(qku + 1) = π(qku−1)
(
λ
µu

)qku−qku−1+1
and π(qkl−1) = π(qkl)

(µl
λ

)qkl−qkl−1 . From

the definition of µF,β we have that qku − qku−1 and qkl − qkl−1 are both Θ(β), as β ↑ ∞. Since

π(qku−1) and π(qkl−1) are both bounded above by one, we have that Pr {µF,β(Q) > µu} as well

as Pr {µF,β(Q) < µl} are both ρΘ(β), where 0 < ρ < 1. Then we have that C(γβ)− c(λ) = ρΘ(β)

and Q(γβ) = O(β). In summary, we have shown a new optimality property of heuristic policies,

obtained from a fluid model analysis. This raises the question whether such fluid policies are order

optimal even for general network scenarios.

7.1.2 Extensions to systems with service time control

We note that the service rate control variable has been the service batch size for all the discrete

time queueing models considered in this thesis. However, there are scenarios where both batch

size and batch service time can be controlled, e.g., for a noisy point to point link which uses block
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coding, both the number of encoded message symbols (the batch size) and the codeword length

can be dynamically controlled (the service time for the batch) to tradeoff the average error rate

with the average delay of the message symbols. Such models also arise as a special case, when

single decision policies with observed initial information are used, for the general class of renewal

models considered by Neely [46]. We note that for such models the service cost is then modelled

as a function of both batch size and batch service time.

We now comment on how asymptotic lower bounds can be derived for such models, using the

methods in Chapter 4. We note that for stationary policies, that decide on the batch size and batch

service time as a function of the current queue length, the queue length evolution sampled at the

decision epochs evolves as a semi-Markov process. By uniformization [75] the average cost and

average queue length for a semi-Markov process can be obtained via an equivalent Markov process.

The stagewise drift of this equivalent Markov process depends on both the batch size as well as

the batch service time. We expect that the analysis of this equivalent Markov process is similar to

the analysis carried out in Chapter 4, but with the above drift function, under the restriction to

admissible policies.

We consider a simplified model in [52], wherein asymptotic lower bounds are derived for a continuous

time queueing model with Poisson arrivals and service time control with service batch size fixed to

be 1. For this model, as the service batch size is fixed to be 1, whenever there is service, the service

cost is a function only of the batch service time, which is real valued. For the above continuous

time model, where the queue evolution is on the integers, if the service cost per unit batch service

time is a strictly convex function of the batch service time, then we obtain that the minimum

average queue length grows as Ω
(

1√
V

)
when the average service cost constraint is V more than

the minimum average service cost required for stability. Obtaining asymptotic bounds for queueing

models where both batch size and batch service time can be controlled, is a problem which has

scope for future work.
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